UPSKILL MATH PLUS
Learn Mathematics through our AI based learning portal with the support of our Academic Experts!
Learn moreAdditive Identity:
The null matrix or zero matrix which has all the elements as zero.
O = \begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}
The zero matrices are the identity for matrix addition. When a zero matrix (O) is added to any matrix, say A, the result is always the same matrix A.
Let A be any matrix. Then, A+O =O +A = A.
Example:
Let's take the matrix A = \begin{bmatrix} 5 & 10\\ 4 & 8 \end{bmatrix}
So, A + O = \begin{bmatrix} 5 & 10\\ 4 & 8 \end{bmatrix} + \begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 10\\ 4 & 8 \end{bmatrix}
Additive Inverse:
If A be any given matrix then –A is the additive inverse of A.
Example:
If A = \begin{bmatrix} 5 & -10 & 15\\ 6 & 8 & -7\\ -9 & 2 & 14 \end{bmatrix} then - A = \begin{bmatrix} -5 & 10 & -15\\ -6 & -8 & 7\\ 9 & -2 & -14 \end{bmatrix}
Important!
When we add the two additive inverse matrices we get zero matrix.
That is A+(−A) = (−A)+A =O