PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
1. Find the coordinates of the point which divides the line segment joining the points (3, -5) and (-3, 4) internally, in the ratio 1 : 2.
 
Solution:
 
Let A(x_1, y_1) = (3, -5) , B(x_2, y_2) = (-3, 4) and P(x, y) be the required point.
 
Ratio, (m : n) = 1 : 2.
 
Section formula:
 
P(x,y)=mx2+nx1m+n,my2+ny1m+n
 
=1×3+2×31+2,1×4+2×51+2
 
=3+63,4103
 
=33,63
 
= (1, -2)
 
Therefore, the coordinates of the required point are (1, -2).
 
 
2. Find the ratio in which the line segment joining the points (– 3, 10) and (6, – 8) is divided by (– 1, 6).
 
Solution:
 
Let A(x_1, y_1) = (-3, 10) , B(x_2, y_2) = (6, -8) and P(x, y) = (-1, 6).
 
The ratio m : n can also be written as mn:1.
That is k : 1, where k=mn.
 
If the point P(x, y) divides the line segment in the ratio k : 1, then the coordinates are:
 
P(x,y)=kx2+x1k+1,ky2+y1k+1
 
1,6=k×6+3k+1,k×8+10k+1
 
1,6=6k3k+1,8k+10k+1
 
Equate the coordinate of x values.
 
1=6k3k+1
 
-1(k + 1) = 6k - 3
 
-k - 1 = 6k - 3
 
-1 + 3 = 6k + k
 
2 = 7k
 
k=72
 
So, k:1=72:1=7:2
 
Therefore, the ratio is 7:2.