
PUMPA - SMART LEARNING
எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்
Book Free Demo1. Find the coordinates of the point which divides the line segment joining the points (3, -5) and (-3, 4) internally, in the ratio 1 : 2.
Solution:
Let A(x_1, y_1) = (3, -5) , B(x_2, y_2) = (-3, 4) and P(x, y) be the required point.
Ratio, (m : n) = 1 : 2.
Section formula:
= (1, -2)
Therefore, the coordinates of the required point are (1, -2).
2. Find the ratio in which the line segment joining the points (– 3, 10) and (6, – 8) is divided by (– 1, 6).
Solution:
Let A(x_1, y_1) = (-3, 10) , B(x_2, y_2) = (6, -8) and P(x, y) = (-1, 6).
The ratio m : n can also be written as .
That is k : 1, where .
If the point P(x, y) divides the line segment in the ratio k : 1, then the coordinates are:
Equate the coordinate of x values.
-1(k + 1) = 6k - 3
-k - 1 = 6k - 3
-1 + 3 = 6k + k
2 = 7k
So,
Therefore, the ratio is 7:2.