UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
The points \(A \left(  x_1, y_1 \right)\), \(B \left(  x_2, y_2 \right)\) and \(C \left(  x_3, y_3 \right)\) are the vertices of the triangle \(ABC\).
 
1. The median from A meets BC at D. Find the coordinates of the point D.
 
2. Find the coordinates of the point P on AD such that \(AP:PD = 2:1\)
 
3. Find the coordinates of the points Q and R on median BE and CF, respectively such that \(BQ:QE = 2:1\) and  \(CR:RF = 2:1\)
 
4. What are the coordinates of the centroid of the triangle \(ABC\)?
 
Answer:  
 
The coordinates of the point D is 
 
The coordinates of the point P is
 
The coordinates of the point Q is
 
The coordinates of the point R is
 
The coordinates of centroid of the triangle ABC is   
 
Answer variants:
\( \left( \frac{x_2+x_3}{2} , \frac{y_2+y_3}{2} \right)\)
\( \left( \frac{ x_2+x_3 + x_1}{3} , \frac{ y_2+y_3+y_1} {3}  \right)\)
\( \left( \frac{ x_1+x_2 + x_3}{3} , \frac{ y_1+y_2+y_3} {3}  \right)\)
\( \left( \frac{ x_1+x_3 + x_2}{3} , \frac{ y_1+y_3+y_2} {3}  \right)\)
\( \left( \frac{ x_1+x_2 + x_3}{3} , \frac{ y_1+y_2+y_3} {3}  \right)\)