PUMPA - SMART LEARNING
எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்
Book Free DemoThe points \(A \left( x_1, y_1 \right)\), \(B \left( x_2, y_2 \right)\) and \(C \left( x_3, y_3 \right)\) are the vertices of the triangle \(ABC\).
1. The median from A meets BC at D. Find the coordinates of the point D.
2. Find the coordinates of the point P on AD such that \(AP:PD = 2:1\)
3. Find the coordinates of the points Q and R on median BE and CF, respectively such that \(BQ:QE = 2:1\) and \(CR:RF = 2:1\)
Answer:
The coordinates of the point D is
The coordinates of the point P is
The coordinates of the point Q is
The coordinates of the point R is
The coordinates of centroid of the triangle ABC is
Answer variants:
\( \left( \frac{x_2+x_3}{2} , \frac{y_2+y_3}{2} \right)\)
\( \left( \frac{ x_2+x_3 + x_1}{3} , \frac{ y_2+y_3+y_1} {3} \right)\)
\( \left( \frac{ x_1+x_2 + x_3}{3} , \frac{ y_1+y_2+y_3} {3} \right)\)
\( \left( \frac{ x_1+x_3 + x_2}{3} , \frac{ y_1+y_3+y_2} {3} \right)\)
\( \left( \frac{ x_1+x_2 + x_3}{3} , \frac{ y_1+y_2+y_3} {3} \right)\)