PUMPA - SMART LEARNING
எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்
Book Free DemoWe have learnt that the roots of the quadratic equation \(ax^2 + bx + c = 0\) can be found by the quadratic formula:
Important!
\(b^2 - 4ac\) is called the discriminant of the quadratic equation \(ax^2 + bx + c = 0\).
Let us discuss the nature of the roots of the quadratic equation depending on the discriminant.
Case I: \(b^2 - 4ac > 0\)
Here, \(b^2 - 4ac > 0\). That means the value of the discriminant is positive.
Then, the possible roots are and .
If \(b^2 - 4ac > 0\), then the roots are real and distinct.
Case II: \(b^2 - 4ac = 0\)
Here, \(b^2 - 4ac = 0\). That means the value of the discriminant is zero.
and
and
The possible roots are and .
If \(b^2 - 4ac = 0\), then the roots are real and equal.
Case III: \(b^2 - 4ac < 0\)
Here, \(b^2 - 4ac < 0\). That means the value of the discriminant is negative.
We won't get any real roots in this case.
If \(b^2 - 4ac < 0\), then there are no real roots.