UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Prove that \sqrt{3} + \sqrt{5} is irrational.
 
Ans:
 
Let's prove \sqrt{3} + \sqrt{5} is an irrational number.
 
Now prove by contradiction method.
 
1. Assume \sqrt{3} + \sqrt{5}  is
2. Therefore, it can be written as
3. And p and q are
4
Squaring on both sides, we get
5. Simplifying the term,
6. This implies that,
7. This contradicts
our assumption
8. Thus, \sqrt{3} + \sqrt{5} is
Answer variants:
co-primes
an irrational number
a rational number
\sqrt{3} + \sqrt{5}=\frac{p}{q} where p, q are integers and q = 0
\sqrt{3} + \sqrt{5}=\frac{p}{q} where p, q are integers and q \neq 0
(\sqrt{3} - \sqrt{5})^2 = \left(\frac{p}{q} \right)^2
\sqrt{3} + \sqrt{5}=\frac{p}{q} where p, q are integers and p \neq 0
(\sqrt{3} + \sqrt{5})^2 = \left(\frac{p}{q} \right)^2
\sqrt{15} =\frac{p^2 - 8q^2}{2q^2}
\sqrt{3} + \sqrt{5}
contradicts
\sqrt{15} is a rational number
(\sqrt{3} + \sqrt{5})^2 = \left(\frac{q}{p} \right)^2
\sqrt{15} is an rational number
Satisfies
\sqrt{5} =\frac{p^2 - 8q^2}{2q^2}
composites
\sqrt{15} =\frac{8p^2 - q^2}{2q^2}