PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
The formula for finding the arithmetic mean using the direct method is given by:
 
\overline X = \frac{\sum f_ix_i}{\sum f_i}
 
Where i varies from 1 to n, x_i is the midpoint of the class interval and f_i is the frequency.
 
Steps:
 
1. Calculate the midpoint of the class interval and name it as x_i.
 
2. Multiply the midpointsx_i with the frequencyf_i of each class interval and name it as f_ix_i.
 
3. Find the values \sum f_ix_i and \sum f_i.
 
4. Divide \sum f_ix_i by \sum f_i to determine the mean of the data.
Example:
The following frequency distribution table shows that the number of trees based on the height in metres. Find the average height of the trees.
 
Height (in m)30 - 4040 - 5050 - 6060 - 7070 - 80
Number of trees1241562001010
 
Solution:
 
Let us form a frequency distribution table.
 
Height
(in m)
Number of trees
(f_i)
Midpoint
(x_i)
f_ix_i
30 - 40124354340
40 - 50156457020
50 - 602005511000
60 - 701065650
70 - 801075750
Total\sum f_i = 500 \sum f_ix_i = 23760
 
Mean \overline X = \frac{23760}{500} = 47.52
 
Therefore, the average height of the trees is 47.52.