
PUMPA - SMART LEARNING
எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்
Book Free DemoThe formula for finding the arithmetic mean using the direct method is given by:
\overline X = \frac{\sum f_ix_i}{\sum f_i}
Where i varies from 1 to n, x_i is the midpoint of the class interval and f_i is the frequency.
Steps:
1. Calculate the midpoint of the class interval and name it as x_i.
2. Multiply the midpointsx_i with the frequencyf_i of each class interval and name it as f_ix_i.
3. Find the values \sum f_ix_i and \sum f_i.
4. Divide \sum f_ix_i by \sum f_i to determine the mean of the data.
Example:
The following frequency distribution table shows that the number of trees based on the height in metres. Find the average height of the trees.
Height (in m) | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 |
Number of trees | 124 | 156 | 200 | 10 | 10 |
Solution:
Let us form a frequency distribution table.
Height (in m) | Number of trees (f_i) | Midpoint (x_i) | f_ix_i |
30 - 40 | 124 | 35 | 4340 |
40 - 50 | 156 | 45 | 7020 |
50 - 60 | 200 | 55 | 11000 |
60 - 70 | 10 | 65 | 650 |
70 - 80 | 10 | 75 | 750 |
Total | \sum f_i = 500 | \sum f_ix_i = 23760 |
Mean \overline X = \frac{23760}{500} = 47.52
Therefore, the average height of the trees is 47.52.