
PUMPA - SMART LEARNING
எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்
Book Free DemoLet us consider the steps for finding the mean of grouped data using the step deviation method.
Steps:
1. Calculate the midpoint of the class interval and name it as x_i.
2. From the data of x_i, choose any value(preferably in the middle) as the assumed mean(a).
3. Determine the deviation (d = x_i - a) for each class.
4. Determine the deviation (u = \frac{x_i - a}{h} where h is the class size) for each class.
5. Multiply the frequency and u_i of each class interval and name it as f_iu_i.
6. Calculate the mean by applying the formula \overline X = a + \left[\frac{\sum fd}{\sum f} \times h \right].
Example:
Find the mean of the following frequency distribution:
Class interval | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 |
Frequency | 124 | 156 | 200 | 10 | 10 |
Solution:
Let the assumed mean be a = 55 and class width h = 10.
Class interval | Frequency f_i | Midpoint x_i | Deviation d_i = x_i - 55 | u_i = \frac{x - a}{h} | f_iu_i |
30 - 40 | 124 | 35 | -20 | -2 | -248 |
40 - 50 | 156 | 45 | -10 | -1 | -156 |
50 - 60 | 200 | 55 | 0 | 0 | 0 |
60 - 70 | 10 | 65 | 10 | 1 | 10 |
70 - 80 | 10 | 75 | 20 | 2 | 20 |
Total | \sum f_i = 500 | \sum f_iu_i = -374 |
We know that the mean of the grouped frequency distribution using the step deviation method can be determined using the formula, \overline X = a + \left[\frac{\sum f_iu_i}{\sum f_i} \times h \right].
Substituting the known values in the above formula, we have:
\overline X = 55 + \left[\frac{-374}{500} \times 10 \right]
\overline X = 55 - 7.48
\overline X = 47.52
Therefore, the mean of the given data is 47.52.