PDF chapter test TRY NOW

The mean of the ungrouped frequency distribution can be determined using the formula:
\overline X = \frac{f_1 x_1 + f_2 x_2 + ... + f_n x_n}{f_1 + f_2 + ... + f_n} = \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}
Example:
The height(in cm) of 20 students in a classroom are:
 
Height
x_i
Number of students
f_i
1301
1352
1401
1552
1631
1653
1772
1892
1962
1004
 
Find the mean height of the 20 students.
 
Solution:
 
To find the value of f_ix_i, multiply the value of x and f of each entry.
 
Consider for the mark 130. That is, 130 \times 1 = 130
 
Similarly, for the mark 135, we have 135 \times 2 = 270 and so on.
 
Tabulating these values, we get:
 
Marks
x_i
Frequency
f_i
f_ix_i
1301130
1352270
1401140
1552310
1631163
1653495
1772354
1892378
1962392
1004400
Total\sum f_i = 20\sum f_ix_i = 3032
 
Substituting the known values in the above formula, we get:
 
Mean \overline X = \frac{3032}{20} = 151.6
 
Therefore, the mean of the given data is 151.6.