UPSKILL MATH PLUS
Learn Mathematics through our AI based learning portal with the support of our Academic Experts!
Learn moreThe mean of the ungrouped frequency distribution can be determined using the formula:
\(\overline X = \frac{f_1 x_1 + f_2 x_2 + ... + f_n x_n}{f_1 + f_2 + ... + f_n}\) \(= \frac{\sum_{i=1}^{n} f_i x_i}{\sum_{i=1}^{n} f_i}\)
Example:
The height(in \(cm\)) of \(20\) students in a classroom are:
Height \(x_i\) | Number of students \(f_i\) |
\(130\) | \(1\) |
\(135\) | \(2\) |
\(140\) | \(1\) |
\(155\) | \(2\) |
\(163\) | \(1\) |
\(165\) | \(3\) |
\(177\) | \(2\) |
\(189\) | \(2\) |
\(196\) | \(2\) |
\(100\) | \(4\) |
Find the mean height of the \(20\) students.
Solution:
To find the value of \(f_ix_i\), multiply the value of \(x\) and \(f\) of each entry.
Consider for the mark \(130\). That is, \(130 \times 1 = 130\)
Similarly, for the mark \(135\), we have \(135 \times 2 = 270\) and so on.
Tabulating these values, we get:
Marks \(x_i\) | Frequency \(f_i\) | \(f_ix_i\) |
\(130\) | \(1\) | \(130\) |
\(135\) | \(2\) | \(270\) |
\(140\) | \(1\) | \(140\) |
\(155\) | \(2\) | \(310\) |
\(163\) | \(1\) | \(163\) |
\(165\) | \(3\) | \(495\) |
\(177\) | \(2\) | \(354\) |
\(189\) | \(2\) | \(378\) |
\(196\) | \(2\) | \(392\) |
\(100\) | \(4\) | \(400\) |
Total | \(\sum f_i = 20\) | \(\sum f_ix_i = 3032\) |
Substituting the known values in the above formula, we get:
Mean \(\overline X = \frac{3032}{20}\) \(= 151.6\)
Therefore, the mean of the given data is \(151.6\).