UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
In our day-to-day life, we come across a wide range of objects in the form of a combination of two or more solid shapes.
 
Let us discuss some real-life examples in this article where we can find the combination of one or more solids and learn how to find their volumes.
 
1. Capsule
 
capsule.png
 
The capsule is a combination of two solids, cylinder and hemisphere.
 
12.png
 
2. Circus tent
 
circus tent.jpg
 
The circus tent is a combination of a cone and a cylinder.
 
tent_illus.PNG
 
3. Lollipop
 
lollipop.png
 
The lollipop is a combination of a sphere and a cylinder.
 
8.png
Example:
The glass in the form of a cylinder surmounted on a hemisphere has a uniform radius of \(4\) \(cm\) and, the height of the cylindrical part is \(7\) \(cm\). Find the capacity of the glass.
 
Solution:
 
The volume of the glass \(=\) Volume of the hemisphere \(+\)Volume of the cylinder
 
Volume of the glass \(=\) \(\frac{2}{3} \pi r^3 \) \(+\) \(\pi r^2 h\)
 
\(=\)  \(\left[\frac{2}{3} \times \frac{22}{7} \times (4)^3\right]\) \(+\) \(\left[\frac{22}{7} \times (4^2) \times 7 \right]\)
 
\(=\)  \(\left[\frac{2}{3} \times \frac{22}{7} \times 64\right]\) \(+\) \(\left[\frac{22}{7} \times 16 \times 7 \right]\)
 
\(=\) \(134.1\)  \(+\) \(352\)
 
\(=\)  \(486.1\) \(cm^3\)
 
Therefore, the capacity of the glass is \(486.1\) \(cm^3\).