PDF chapter test TRY NOW

The inverse operation of a cube is cube root. The symbol used to represent the cube root is \sqrt[3]{}.
 
A cube root is a unique value that gives us the original number when we multiply itself by three times.
 
The cube root of a is denoted by \sqrt[3]{a} or a^{\frac{1}{3}}.
Example:
Find the cube root of 64.
 
Solution:
 
\sqrt[3]{64} = \sqrt[3]{4 \times 4 \times 4} = \sqrt[3]{4^3}  = 4
 
Thereforethe cube root of 64 is 4.
By the observation of the above example, we can conclude that:
 
The cube of 4 is 64.
 
The cube root of 64 is 4.
 
cube_4_64 (1).png
 
The following table consist of cube and cube roots of the first 20 numbers.
 
Number
Cube number
Cube root
Number
Cube number
Cube root
1
1^3 = 1
\sqrt[3]{1} = 1
11
11^3 = 1331
\sqrt[3]{1331} = 11
2
2^3 = 8
\sqrt[3]{8} = 2
12
12^3 = 1728
\sqrt[3]{1728} = 12
3
3^3 = 27
\sqrt[3]{27} = 3
13
13^3 = 2197
\sqrt[3]{2197} = 13
4
4^3 = 64
\sqrt[3]{64} = 4
14
14^3 = 2744
\sqrt[3]{2744} = 14
5
5^3 = 125
\sqrt[3]{125} = 5
15
15^3 = 3375
\sqrt[3]{3375} = 15
6
6^3 = 216
\sqrt[3]{216} = 6
16
16^3 = 4096
\sqrt[3]{4096} = 16
7
7^3 = 343
\sqrt[3]{343} = 7
17
17^3 = 4913
\sqrt[3]{4913} = 17
8
8^3 = 512
\sqrt[3]{512} = 8
18
18^3 = 5832
\sqrt[3]{5832} = 18
9
9^3 = 729
\sqrt[3]{729} = 9
19
19^3 = 6859
\sqrt[3]{6859} = 19
10
10^3 = 1000
\sqrt[3]{1000} = 10
20
20^3 = 8000
\sqrt[3]{8000} = 20