
PUMPA - SMART LEARNING
எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்
Book Free DemoDistributive property of multiplication over addition: a(b + c) = ab + ac where a, b and c are rational numbers.
Distributive property of multiplication over subtraction: a(b - c) = ab - ac where a, b and c are rational numbers.
Now let's see the distributive property of multiplication over addition.
Distribution of multiplication over addition:
If a, b and c are three integers, then:
a × (b + c) = (a × b) + (a × c)
Let a = \frac{-9}{2}, b = \frac{-5}{4} and c = \frac{1}{3}.
Then, \frac{-9}{2} \times \left(\frac{-5}{4} + \frac{1}{3} \right) = \left(\frac{-9}{2} \times \frac{-5}{4} \right) + \left(\frac{-9}{2} \times \frac{1}{3} \right)
Let us verify the property.
Consider the LHS.
LHS = \frac{-9}{2} \times \left(\frac{-5}{4} + \frac{1}{3} \right)
= \frac{-9}{2} \times \left(\frac{-15 + 4}{12} \right) [LCM of 3 and 4 is 12]
= \frac{-9}{2} \times \left(\frac{-11}{12} \right)
= \frac{99}{24}
= \frac{33}{8} ---- (1)
Now, consider the RHS.
RHS = \left(\frac{-9}{2} \times \frac{-5}{4} \right) + \left(\frac{-9}{2} \times \frac{1}{3} \right)
= \frac{45}{8} + \left(\frac{-9}{6} \right)
= \frac{45}{8} - \frac{3}{2}
= \frac{45 - 12}{8} [LCM of 2 and 8 is 8]
= \frac{33}{8} ---- (2)
From equations (1) and (2), we have:
\frac{-9}{2} \times \left(\frac{-5}{4} + \frac{1}{3} \right) = \left(\frac{-9}{2} \times \frac{-5}{4} \right) + \left(\frac{-9}{2} \times \frac{1}{3} \right)
This implies that a × (b + c) = (a × b) + (a × c).
Distribution of multiplication over subtraction:
If a, b and c are three integers, then:
a × (b - c) = (a × b) - (a × c)
Let a = \frac{-9}{2}, b = \frac{-5}{4} and c = \frac{1}{3}.
Then, \frac{-9}{2} \times \left(\frac{-5}{4} - \frac{1}{3} \right) = \left(\frac{-9}{2} \times \frac{-5}{4} \right) - \left(\frac{-9}{2} \times \frac{1}{3} \right)
Let us verify the property.
Consider the LHS.
LHS = \frac{-9}{2} \times \left(\frac{-5}{4} - \frac{1}{3} \right)
= \frac{-9}{2} \times \left(\frac{-15 - 4}{12} \right) [LCM of 3 and 4 is 12]
= \frac{-9}{2} \times \left(\frac{-19}{12} \right)
= \frac{171}{24}
= \frac{57}{8} ---- (1)
Now, consider the RHS.
RHS = \left(\frac{-9}{2} \times \frac{-5}{4} \right) - \left(\frac{-9}{2} \times \frac{1}{3} \right)
= \frac{45}{8} - \left(\frac{-9}{6} \right)
= \frac{45}{8} + \frac{3}{2}
= \frac{45 + 12}{8} [LCM of 2 and 8 is 8]
= \frac{57}{8} ---- (2)
From equations (1) and (2), we have:
\frac{-9}{2} \times \left(\frac{-5}{4} - \frac{1}{3} \right) = \left(\frac{-9}{2} \times \frac{-5}{4} \right) - \left(\frac{-9}{2} \times \frac{1}{3} \right)
This implies that a × (b - c) = (a × b) - (a × c).