PDF chapter test TRY NOW

Triplet means a set of three numbers.
A triplet (a, b, c) of three natural numbers is called a Pythagorean triplets if it satisfies a2+b2=c2.
Example:
1. Check (3, 4, 5) is a Pythagorean triplet.
 
Solution:
 
Here a = 3, b = 4 and c = 5.
 
L.H.S. = a^2 + b^2
 
= 3^2 + 4^2
 
= 9 + 16
 
= 25
 
R.H.S. = c^2
 
= 5^2 = 25
 
So, 25 = 25
 
L.H.S. = R.H.S.
 
Therefore, (3, 4, 5) is a Pythagorean triplet.
 
 
2. Check (6, 8, 9) is a Pythagorean triplet or not.
 
Solution:
 
Here a = 6, b = 8 and c = 9.
 
L.H.S. = a^2 + b^2
 
= 6^2 + 8^2
 
= 36 + 64
 
= 100
 
R.H.S. = c^2
 
= 9^2 = 81
 
So, 100 \ne 81
 
L.H.S. \ne R.H.S.
 
Therefore, (6, 8, 9) is not a Pythagorean triplet.
General form of Pythagorean triplet
Let us consider any natural a > 1.
 
The triplet (2a, a^2 - 1, a^2 + 1) will form a Pythagorean triplet.
 
The general formula to find a Pythagorean triplet is (2a)^2 + (a^2 - 1)^2 = (a^2 + 1)^2, for any natural number a > 1.
Example:
Find a Pythagorean triplet one of whose least number is 10.
  
General form of Pythagorean triplet is (2a, a^2 - 1, a^2 + 1).
 
Least number (2a) = 10
 
a = \frac{10}{2}
 
a = 5
 
a^2 - 1 = 5^2 - 1 = 24
 
a^2 + 1 = 5^2 + 1 = 26
 
The triplet is (10, 24, 26).
 
To check the triplet satisfies the Pythagorean relation:
 
(2a)^2 + (a^2 - 1)^2 = (a^2 + 1)^2
 
10^2 + 24^2 = 26^2
 
100 + 576 = 676
 
676 = 676
  
Therefore, (10, 24, 26) is a Pythagorean triplet.
Important!
L.H.S. = Left Hand Side
 
R.H.S. = Right Hand Side