PDF chapter test TRY NOW
Methodical recommendation:
Textbook Questions
Number | Name | Type | Difficulty | Marks | Description |
---|---|---|---|---|---|
1. | Example problems I | Other | easy | 2 m. | Calculate the square number of the given numbers without actual multiplication. |
2. | Example problems II | Other | easy | 2 m. | Calculate the square number of the given numbers without actual multiplication. |
3. | Example problems III | Other | hard | 1 m. | Find the Pythagorean triplets one of whose number is given. |
4. | Example problems IV | Other | hard | 1 m. | Find the Pythagorean triplets one of whose number is given. |
5. | Exercise problems I | Other | easy | 2 m. | Find the unit digit of the squares of the given numbers. |
6. | Exercise problems II | Other | easy | 2 m. | Find the unit digit of the squares of the given numbers. |
7. | Exercise problems III | Other | easy | 2 m. | Find the unit digit of the squares of the given numbers. |
8. | Exercise problems IV | Other | easy | 2 m. | Find the unit digit of the squares of the given numbers. |
9. | Exercise problems V | Other | easy | 2 m. | Find the unit digit of the squares of the given numbers. |
10. | Exercise problems VI | Other | easy | 0 m. | Give the correct reason the given number is not a perfect square. |
11. | Exercise problems VII | Other | easy | 0 m. | Give the correct reason the given number is not a perfect square. |
12. | Exercise problems VIII | Other | easy | 0 m. | Give the correct reason the given number is not a perfect square. |
13. | Exercise problems IX | Other | easy | 0 m. | Give the correct reason the given number is not a perfect square. |
14. | Exercise problems X | Other | easy | 2 m. | Find the squares of the number is odd number or not. |
15. | Exercise problems XI | Other | easy | 2 m. | Find the squares of the number is odd number or not. |
16. | Exercise problems XII | Other | easy | 2 m. | Find the missing terms using the given pattern. |
17. | Exercise problems XIII | Other | easy | 4 m. | Find the unkown term using the given pattern. |
18. | Exercise problems XIV | Other | medium | 4 m. | Find sum of the value of the given without adding find the sum. |
19. | Exercise problems XV | Other | medium | 2 m. | Find sum of the value of the given without adding find the sum. |
20. | Exercise problems XVI | Other | medium | 2 m. | Find the odd numbers of the given sum. |
21. | Exercise problems XVII | Other | medium | 4 m. | To find the numbers between the perfect square numbers. |
22. | Exercise problems XVIII | Other | medium | 2 m. | To find the numbers between the perfect square numbers. |
23. | Exercise problems XIX | Other | easy | 1 m. | Calculate the square number of the given numbers without actual multiplication. |
24. | Exercise problems XX | Other | easy | 1 m. | Calculate the square number of the given numbers without actual multiplication. |
25. | Exercise problems XXI | Other | easy | 4 m. | Calculate the square number of the given numbers without actual multiplication. |
26. | Exercise problems XXII | Other | easy | 2 m. | Calculate the square number of the given numbers without actual multiplication. |
27. | Exercise problems XXIII | Other | hard | 3 m. | Find the Pythagorean triplets one of whose number is given. |
28. | Exercise problems XXIV | Other | hard | 3 m. | Find the Pythagorean triplets one of whose number is given. |
29. | Exercise problems XXV | Other | hard | 3 m. | Find the Pythagorean triplets one of whose number is given. |
30. | Exercise problems XXVI | Other | hard | 3 m. | Find the Pythagorean triplets one of whose number is given. |
31. | Exemplar Example Problems I | Other | easy | 1 m. | To choose which of the squares of the number is odd. |
32. | Exemplar Example Problems II | Other | easy | 1 m. | To choose which of the following will have 1 at its units place. |
33. | Exemplar Exercise Problems III | Other | medium | 1 m. | To find the numbers between the perfect square numbers. |
34. | Exemplar Exercise Problems VI | Other | easy | 1 m. | Choose the given number is not a perfect square. |
35. | Exemplar Example Problems V | Other | easy | 2 m. | To choose which of a perfect square can never end the one digit. |
36. | Exemplar Example Problems VI | Other | easy | 2 m. | Find the square of given decimal numbers using the steps given in theory. |
37. | Exemplar Example Problems VII | Other | easy | 1 m. | Find the unit place of the square value. |
38. | Exemplar Example Problems VIII | Other | easy | 2 m. | To determine the given statement is true or false. |
39. | Exemplar Example Problems IX | Other | medium | 1 m. | To determine the given statement is true or false using sum of consecutive odd integers. |
40. | Exemplar Example Problems X | Other | easy | 2 m. | Use the square of the number. |
41. | Exemplar Example Problems XI | Other | hard | 3 m. | Find the Pythagorean triplets one of whose number is given. |
42. | Exemplar Example Problems XII | Other | hard | 1 m. | Find the Pythagorean triplets one of whose number is given. |
43. | Exemplar Example Problems XIII | Other | hard | 3 m. | Find the smallest number which divides the given number to get a perfect square. |
44. | Exemplar Exercise Problems I | Other | hard | 2 m. | Choose the correct answer using a square of the numbers. |
45. | Exemplar Exercise problems II | Other | easy | 2 m. | Choose the correct answer using the unit digit of the squares of the given numbers. |
46. | Exemplar Exercise problems III | Other | medium | 2 m. | Choose the correct answer using the numbers between the perfect square numbers. |
47. | Exemplar Exercise problems VI | Other | medium | 2 m. | Choose the correct answer using Pythagorien triplet. |
48. | Exemplar Exercise problems V | Other | medium | 2 m. | Choose the correct answer using the sum of n odd natural numbers. |
49. | Exemplar Exercise problems VI | Other | medium | 2 m. | Choose the correct answer using following pattern. |
50. | Exemplar Exercise problems VII | Other | medium | 2 m. | Choose the correct answer using ending digit of the perfect square. |
51. | Exemplar Exercise problems VIII | Other | medium | 2 m. | Find the answer using the concept of ending digit of the square number. |
52. | Exemplar Exercise problems IX | Other | medium | 2 m. | Find the answer using the concept of decimal of the square number. |
53. | Exemplar Exercise problems X | Other | medium | 2 m. | Find the answer using the concept of decimal of the square number and the sum of the odd natural number. |
54. | Exemplar Exercise problems XI | Other | medium | 3 m. | Find the answer using the square concept. |
55. | Exemplar Exercise problems XII | Other | medium | 1 m. | Find the least number multiplied by the perfect square. |
56. | Exemplar Exercise problems XIII | Other | medium | 2 m. | To determine the given statement is true or false using the square of the given number. |
57. | Exemplar Exercise problems XIV | Other | medium | 2 m. | To determine the given statement is true or false using the square of the given number. |
58. | Exemplar Exercise problems XV | Other | medium | 2 m. | To determine the given statement is true or false using the square of the decimal number. |
59. | Exemplar Exercise problems XVI | Other | hard | 2 m. | To determine the given statement is true or false using the number of natural number between the square of the numbers. |
60. | Exemplar Exercise problems XVII | Other | hard | 2 m. | To determine the given statement is true or false using the number of natural number between the square of the numbers. |
61. | Exemplar Exercise problems XVIII | Other | hard | 2 m. | To determine the given statement is true or false using the pythagorean triplet and end digit of the square number. |
62. | Exemplar Exercise problems XIX | Other | medium | 14 m. | To find the value using perfect square and sum of odd integers. |
63. | Exemplar Exercise problems XX | Other | medium | 0 m. | Show that the given number is perfect square or not. |
64. | Exemplar Exercise problems XXI | Other | easy | 1 m. | To find the given number is perfect square or not using prime factorisation method. |
65. | Exemplar Exercise problems XXII | Other | easy | 1 m. | To find the given number is perfect square or not using prime factorisation method. |
66. | Exemplar Exercise problems XXIII | Other | easy | 2 m. | To find the given number is perfect square or not using prime factorisation method. |
67. | Exemplar Exercise problems XXIV | Other | easy | 2 m. | To find the square of the given number using distribution law. |
68. | Exemplar Exercise problems XXV | Other | easy | 4 m. | To find whether the sides form a triangle or not, use a Pythagorean triplet. |
69. | Exemplar Exercise problems XXVI | Other | easy | 1 m. | Find the least number multiplied by the perfect square. |
70. | Exemplar Exercise problems XXVII | Other | easy | 6 m. | Find the pythagorean triplet. |
71. | Exemplar Exercise problems XXVIII | Other | hard | 4 m. | Find the area of the square field using square of the given number. |
72. | Exemplar Exercise problems XXIX | Other | hard | 2 m. | To find the length of the carpet. |
73. | Exemplar Exercise problems XXX | Other | hard | 1 m. | To find the length of the carpet. |
74. | Exemplar Exercise problems XXXI | Other | medium | 1 m. | To find the smallest square number divisible by the given number. |
75. | Exemplar Exercise problems XXXII | Other | hard | 5 m. | To find the strange pair of the numbers. |
76. | Exemplar Exercise problems XXXIII | Other | medium | 2 m. | To find the greatest three digits perfecr square number |
77. | Exemplar Exercise problems XXXIV | Other | medium | 3 m. | To find the least four digit perfect square number. |
78. | Exemplar Exercise problems XXXV | Other | hard | 3 m. | To find the least square number which is exactly divisible by the given numbers. |
Periodic assessments
Number | Name | Recomended time: | Difficulty | Marks | Description |
---|---|---|---|---|---|
1. | Homework I | 00:20:00 | easy | 8 m. | |
2. | Homework II | 00:20:00 | medium | 6 m. | |
3. | Homework III | 00:20:00 | medium | 10 m. | |
4. | Homework IV | 00:20:00 | medium | 19 m. | |
5. | Homework V | 00:20:00 | medium | 7 m. | |
6. | Homework VI | 00:20:00 | hard | 8 m. | |
7. | Homework VII | 00:20:00 | medium | 6 m. | |
8. | Homework VIII | 00:20:00 | medium | 9 m. | |
9. | Homework IX | 00:20:00 | hard | 7 m. | |
10. | Homework X | 00:20:00 | hard | 9 m. | |
11. | Homework XI | 00:20:00 | hard | 6 m. | |
12. | Homework XII | 00:20:00 | hard | 11 m. | |
13. | Homework XIII | 00:20:00 | hard | 12 m. | |
14. | Homework XIV | 00:20:00 | hard | 11 m. | |
15. | Homework XV | 00:20:00 | hard | 5 m. | |
16. | Homework XVI | 00:20:00 | hard | 7 m. | |
17. | Homework XVII | 00:20:00 | hard | 12 m. | |
18. | Homework XVIII | 00:20:00 | easy | 7 m. | |
19. | Revision test I | 00:20:00 | easy | 4 m. | |
20. | Revision test II | 00:20:00 | easy | 4 m. | |
21. | Revision test III | 00:20:00 | easy | 9 m. | |
22. | Revision test IV | 00:20:00 | medium | 6 m. | |
23. | Revision test V | 00:20:00 | medium | 8 m. |