UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Let us expand some of the cubic terms using their identities.
1. \((2x+3y)^3\)
 
Let us use the identity, \((a+b)^3\)\(=\) \(a^3+3a^2b+3ab^2+b^3\).
 
Comparing \((2x+3y)^3\) with \((a+b)^3\), we have \(a=2x\) and \(b=3y\).
 
Substitute the values in the formula.
 
\((2x+3y)^3\) \(=\) \((2x)^3\)\(+\) \(3(2x)^2(3y)\) \(+\) \(3(2x)(3y)^2\) \(+\) \((3y)^3\)
 
\((2x+3y)^3\) \(=\) \(8x^3\)\(+\) \((3 \times 4 \times 3)x^2y\) \(+\) \((3\times 2\times 9)xy^2\)\(+\) \(27y^3\)
 
\(=\) \(8x^3 + 36x^2y + 54xy^2 + 27y^3\)
 
 
2. \((5x-7y)^3\)
 
Let us use the identity, \((a-b)^3\)\(=\)\(a^3-3a^2b+3ab^2-b^3\).
 
Comparing \((5x-7y)^3\) with \((a-b)^3\), we have \(a=5x\) and \(b=7y\).
 
Substitute the values in the formula.
 
\((5x-7y)^3\) \(=\) \((5x)^3\)\(-\) \(3(5x)^2(7y)\) \(+\) \(3(5x)(7y)^2\) \(-\) \((7y)^3\)
 
\((5x-7y)^3\) \(=\) \(125x^3\)\(-\) \((3\times 25\times 7)x^2y\) \(+\) \((3\times 5 \times 49)xy^2\)\(-\) \(343y^3\)
 
\((5x-7y)^3\) \(=\) \(125x^3\) \(-\) \(525x^2y\) \(+\) \(735xy^2\) \(-\) \(343y^3\)
Example:
Look for the following cases where we used the identities.
 
1. Expand \((y-5)^3\) using the identity.
 
The above expression is of the form \((a-b)^3\).
 
We have the identity, \((a-b)^3\)\(=\)\(a^3-3a^2b+3ab^2-b^3\).
 
Substitute \(a = y\) and \(b = 5\) in the formula.
 
y53=y33(y)2(5)+3(y)(5)253
 
y53=y315y2+75y125
 
 
2. Evaluate \(103^3\) using the identity.
 
Rewrite \(103^3\) as \((100+3)^3\).
 
The above expression is of the form \((a+b)^3\).
 
We have the identity, \((a+b)^3\) \(=\) \(a^3+3a^2b+3ab^2+b^3\)
 
Substitute \(a =100\) and \(b = 3\) in the formula.
 
100+32=1003+3(100)2(3)+3(100)(3)2+33
 
=1000000+(3×10000×3)+(3×100×9)+27
 
=1000000+90000+2700+27
 
=1092727