UPSKILL MATH PLUS
Learn Mathematics through our AI based learning portal with the support of our Academic Experts!
Learn moreIdentity VIII: \(a^3 + b^3 + c^3 -3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac)\)
Let us verify the above identity by direct multiplication of the right hand side expression.
\((a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac)\) \(=\) \(a (a^2 + b^2 + c^2 - ab - bc - ac) + b(a^2 + b^2 + c^2 - ab - bc - ac) + c(a^2 + b^2 + c^2 - ab - bc - ac)\)
\(=\) \((a^3 + ab^2 + ac^2 - a^2b - abc - a^2c) + (a^2b + b^3 + bc^2 - ab^2 - b^2c - abc) + (a^2c + b^2c + c^3 - abc - bc^2 - ac^2)\)
Simplify the above expression by combining the like terms.
\(=\) \(a^3 + b^3 + c^3 - 3abc\)
Thus we have the identity \(a^3 + b^3 + c^3 -3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ac)\).
Example:
Expand \(27x^3 + 8y^3 + z^3 - 18xyz\).
Solution:
Let us write the expression of \(27x^3 + 8y^3 + z^3 - 18xyz\) using the identity .
\(=\)
\(=\)
Important!
If \(a+b+c = 0\) then the identity is rewritten as follows:
Example: