PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
In this section, we shall discuss the addition and subtraction of matrices, multiplication of a matrix by a scalar and multiplication of matrices.
Addition and subtraction of matrices:
  • Two matrices can be added or subtracted if they have the same order.
  • To add or subtract two matrices, add or subtract the corresponding elements.
Example:
Addition in matrices:
 
\begin{bmatrix} a & b & c\\ d & e & f \end{bmatrix} + \begin{bmatrix} g & h & i\\ j & k & l \end{bmatrix} = \begin{bmatrix} a+g & b+h & c+i\\ d+j & e+k & f+l \end{bmatrix}
 
Subtraction in matrices:
 
\begin{bmatrix} a & b\\ c & d \end{bmatrix} - \begin{bmatrix} e & f\\ g & h \end{bmatrix} = \begin{bmatrix} a-e & b-f\\ c-g & d-h \end{bmatrix}
If A = (a_{ij})B = (b_{ij}), i = 1, 2,...m, and j = 1, 2, ….n
 
Condition of addition of matrices:
The order of the matrices should be equal when adding the matrices.
Example:
Let's look at the below two matrices.
 
A = \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix}, B =\begin{bmatrix} 1 & 2\\ 3 & 4\\ 5 & 6 \end{bmatrix} what will be the sum of A and B?
 
Solution:
 
Observing the above two matrices we can see that, the matrix A have 3-columns and 3-rows but the matrix B have 3-columns and 2-rows only.
 
A = (a_{ij}) = 3 × 3 matrices and B = (a_{ij}) = 3 × 2
 
When the orders of the two matrices are not equal, then we cannot perform the addition of the same matrices.
 
Therefore, it is impossible to add A and B since they have different orders.