PDF chapter test TRY NOW
Answer variants:
Verify the associative property \((A + B) + C = A + ( B + C)\) of the given matrices.
\(A = \begin{bmatrix}
12 & 6 & -3\\
5 & 4 & 13\\
5 & 2 & 7
\end{bmatrix}, B =\begin{bmatrix}
6 & 14 & 9\\
14 & 5 & 2\\
8 & 13 & 3
\end{bmatrix}, C =\begin{bmatrix}
8 & 4 & 6\\
7 & 5 & 3\\
3 & 1 & -8
\end{bmatrix}\)
12 & 6 & -3\\
5 & 4 & 13\\
5 & 2 & 7
\end{bmatrix}, B =\begin{bmatrix}
6 & 14 & 9\\
14 & 5 & 2\\
8 & 13 & 3
\end{bmatrix}, C =\begin{bmatrix}
8 & 4 & 6\\
7 & 5 & 3\\
3 & 1 & -8
\end{bmatrix}\)
\(A + B\) | \(=\) |
\((A + B) + C\) | \(=\) |
\(B +C\) | \(=\) |
\(A + (B + C)\) | \(=\) |
The associative property of the matrix \((A + B) + C\) \(A + ( B + C)\)