UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Consider A is a square matrix of order n×n and I is the unit matrix of the same order then AI = IA = A.
 
Here, the 2 × 2 order of I matrix is \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
 
Then, the 3 × 2 order of I matrix will be \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}
 
Now let's prove AI = IA = A using 2 × 2 order matrix.
Example:
If A = \begin{bmatrix} 1 & 2 \\  3 & 4 \end{bmatrix} then we have:
 
AI=12341001AI=(1×1)+(2×0)(1×0)+(2×1)(3×1)+(4×0)(3×0)+(4×1)
 
AI = \begin{bmatrix} 1 & 2 \\  3 & 4 \end{bmatrix}……(1)
 
Let's find IA matrix.
 
IA=10011234IA=(1×1)+(0×3)(1×2)+(0×4)(0×1)+(1×3)(0×2)+(1×4)
 
IA = \begin{bmatrix} 1 & 2 \\  3 & 4 \end{bmatrix}……(2)
 
From (1) and (2) we get that (1) = (2) = A.
 
Hence, AI = IA = A proved.