PUMPA - SMART LEARNING
எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்
Book Free DemoConsider \(A\) is a square matrix of order \(n×n\) and \(I\) is the unit matrix of the same order then \(AI = IA = A\).
Here, the \(2 × 2\) order of \(I\) matrix is \(\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}\)
1 & 0 \\
0 & 1
\end{bmatrix}\)
Then, the \(3 × 2\) order of \(I\) matrix will be \(\begin{bmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{bmatrix}\)
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{bmatrix}\)
Now let's prove \(AI = IA = A\) using \(2 × 2\) order matrix.
Example:
If \(A = \begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}\) then we have:
1 & 2 \\
3 & 4
\end{bmatrix}\) then we have:
\(AI = \begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}\)……(1)
1 & 2 \\
3 & 4
\end{bmatrix}\)……(1)
Let's find \(IA\) matrix.
\(IA = \begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}\)……(2)
1 & 2 \\
3 & 4
\end{bmatrix}\)……(2)
From \((1)\) and \((2)\) we get that \((1) = (2) = A\).
Hence, \(AI = IA = A\) proved.