UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Let's learn the various properties of multiplication of matrix as follows:
 
1. Commutative property
  
2. Associative property
 
3. Distributive property
  
4. Multiplication of a matrix by a unit matrix
 
Let's dive into each property individually with an example.
Commutative property of matrix multiplication:
In general, matrix multiplication is not commutative.
If \(A\) is of order \(m×n\) and \(B\) of the order \(n×p\) then \(AB\) is defined but \(BA\) is not defined. Even if \(AB\) and \(BA\) are both defined, they don't need to be equal.
Therefore, in general \(AB ≠ BA\).
Associative property:
Matrix multiplication always satisfies the associative property.
 
That is \((AB)C = A(BC)\).
Example:
If \( A = \begin{bmatrix}
1 & 2 \\ 
3 & 4
\end{bmatrix}, B = \begin{bmatrix}
5 & 6\\
7 & 8
\end{bmatrix}, C = \begin{bmatrix}
9 & 10\\ 
11 & 12
\end{bmatrix}\) then verify that \((AB)C = A (BC)\).
 
Solution:
 
First, we find the sum of \(AB\) matrices, then multiply its result with the \(C) matrix.
 
 \((AB) C= \left ( \begin{bmatrix}
1 & 2 \\ 
3 & 4
\end{bmatrix} \begin{bmatrix}
5 & 6\\
7 & 8
\end{bmatrix} \right )\begin{bmatrix}
9 & 10\\ 
11 & 12
\end{bmatrix}\)
 
\(=\begin{bmatrix}
(1×5) + (2×7) & (1×6) + (2×8)\\
(3×5) + (4×7) & (3×6) + (4×8)
\end{bmatrix} \begin{bmatrix}
9 & 10\\ 
11 & 12
\end{bmatrix}\)
 
\(=\begin{bmatrix}
5 + 14 & 6 + 18\\ 
15+28 & 18+32
\end{bmatrix} \begin{bmatrix}
9 & 10\\ 
11 & 12
\end{bmatrix}\)
 
\(=\begin{bmatrix}
19 & 24\\ 
43 & 50
\end{bmatrix} \begin{bmatrix}
9 & 10\\ 
11 & 12
\end{bmatrix}\)
 
\(=\begin{bmatrix}
(19 × 9) + (24×11)& (19 × 10) + (24×12)\\ 
(43 × 9) + (50×11)& (43 × 10) + (50×12)
\end{bmatrix}\)
 
\(= \begin{bmatrix}
171+264 & 190 + 288\\ 
387 + 550 & 430 + 600
\end{bmatrix}=\begin{bmatrix}
435 & 478\\
937 & 1030
\end{bmatrix}\)……….(1)
 
 
Similarly, let's find \(A(BC)\).
 
 \((AB) C=  \begin{bmatrix}
1 & 2 \\ 
3 & 4
\end{bmatrix} \left (\begin{bmatrix}
5 & 6\\
7 & 8
\end{bmatrix} \begin{bmatrix}
9 & 10\\ 
11 & 12
\end{bmatrix}\right )\)
 
\(A( B C) =\begin{bmatrix}
1 & 2\\
3 & 4
\end{bmatrix} \begin{bmatrix}
(5×9)+ (6 × 11) & (5×10)+ (6 × 12)\\ 
(7×9)+ (8 × 11) & (7×10)+ (8 × 12)
\end{bmatrix}\)
 
\( =\begin{bmatrix}
1& 2\\ 
3& 4
\end{bmatrix} \begin{bmatrix}
111 & 122\\ 
151 & 166
\end{bmatrix}\)
 
\(= \begin{bmatrix}
(1×111)+ (2× 151) & (1×122)+ (2 × 166)\\
(3×111)+ (4× 151) & (3×122)+ (4× 166)
\end{bmatrix}=\begin{bmatrix}
413 & 454\\ 
937 & 1030
\end{bmatrix}\)……….(2)
 
From \((1), (2)\) we can see that \((AB)C) = A(BC)\).
 
Thus, the given matrix satisfies the associative property of matrices.