UPSKILL MATH PLUS
Learn Mathematics through our AI based learning portal with the support of our Academic Experts!
Learn moreIn this section, let us discuss different types of matrices.
1. Row matrix
A matrix is a row matrix when it is made up of just one row and '\(n\)' number of columns. Row matrices are also called row vectors.
For a matrix \(A = \begin{bmatrix}
a_{11} & a_{12} & a_{13} & … & a_{1n}
\end{bmatrix}\), the order of the matrix is \(1\) \(\times\) \(n\).
a_{11} & a_{12} & a_{13} & … & a_{1n}
\end{bmatrix}\), the order of the matrix is \(1\) \(\times\) \(n\).
Example:
Let us look at a few row matrices.
1. \(A = \begin{bmatrix}
\sqrt{2} & \frac{\sqrt 7}{2} & 12
\end{bmatrix}\), where the order of the matrix is \(1\) \(\times\) \(3\).
\sqrt{2} & \frac{\sqrt 7}{2} & 12
\end{bmatrix}\), where the order of the matrix is \(1\) \(\times\) \(3\).
2. \(A = \begin{bmatrix}
7 & 14 & 21 & 28 & 35 & 42 & 49
\end{bmatrix}\), where the order of the matrix is \(1\) \(\times\) \(7\).
7 & 14 & 21 & 28 & 35 & 42 & 49
\end{bmatrix}\), where the order of the matrix is \(1\) \(\times\) \(7\).
2. Column matrix
A matrix is a column matrix comprised of 'm' rows and just one column. Column matrices are also called column vectors.
For a matrix \(A = \begin{bmatrix}
a_{11}\\
a_{21}\\
a_{31}\\
\vdots\\
a_{m1}
\end{bmatrix}\), the order of the matrix is \(m\) \(\times\) \(1\).
a_{11}\\
a_{21}\\
a_{31}\\
\vdots\\
a_{m1}
\end{bmatrix}\), the order of the matrix is \(m\) \(\times\) \(1\).
Example:
Let us look at a few column matrices.
1. \(A = \begin{bmatrix}
2x\\
3x\\
x
\end{bmatrix}\), where the order of the matrix is \(3\) \(\times\) \(1\).
2x\\
3x\\
x
\end{bmatrix}\), where the order of the matrix is \(3\) \(\times\) \(1\).
2. \(A = \begin{bmatrix}
4\\
8\\
12\\
16\\
20
\end{bmatrix}\), where the order of the matrix is \(5\) \(\times\) \(1\).
4\\
8\\
12\\
16\\
20
\end{bmatrix}\), where the order of the matrix is \(5\) \(\times\) \(1\).
3. Square matrix
A matrix is a square matrix when the number of rows equals the number of columns. In other words, \(m\) \(=\) \(n\).
Example:
Let us look at a few square matrices.
1. \(A = \begin{bmatrix}
1 & 2\\
3 & 4
\end{bmatrix}\), where the order of the matrix is \(2\) \(\times\) \(2\).
1 & 2\\
3 & 4
\end{bmatrix}\), where the order of the matrix is \(2\) \(\times\) \(2\).
2. \(A = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 6\\
7 & 8 & 9
\end{bmatrix}\), where the order of the matrix is \(3\) \(\times\) \(3\).
1 & 2 & 3\\
4 & 5 & 6\\
7 & 8 & 9
\end{bmatrix}\), where the order of the matrix is \(3\) \(\times\) \(3\).
Leading diagonal of a square matrix:
In a square matrix, the entries \(a_{ij}\) where \(i\) \(=\) \(j\) form the leading diagonal of a matrix.
Example:
Let us consider the matrix given below.
\(A = \begin{bmatrix}
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}
\end{bmatrix}\)
a_{11} & a_{12} & a_{13}\\
a_{21} & a_{22} & a_{23}\\
a_{31} & a_{32} & a_{33}
\end{bmatrix}\)
Here, the elements \(a_{11}\), \(a_{22}\) and \(a_{33}\) form the elements of the leading diagonal.
4. Diagonal matrix
In a square matrix, when all the entries except the leading diagonal is zero, then it is called a diagonal matrix. In other words, \(a_{ij}\) \(=\) \(0\) for \(i\) \(\neq\) \(j\).
Example:
Let us look at a few diagonal matrices.
1. \(A = \begin{bmatrix}
1 & 0\\
0 & 4
\end{bmatrix}\)
1 & 0\\
0 & 4
\end{bmatrix}\)
2. \(A = \begin{bmatrix}
1 & 0 & 0\\
0 & 5 & 0\\
0 & 0 & 9
\end{bmatrix}\)
1 & 0 & 0\\
0 & 5 & 0\\
0 & 0 & 9
\end{bmatrix}\)
5. Scalar matrix
In a square matrix, when all the elements of the leading diagonal is the same, then it is a scalar matrix
0 & \text{ when } i \neq j \\
k & \text{ when } i = j
\end{cases}\), where \(k\) is a constant.
Example:
Let us look at a few scalar matrices.
1. \(A = \begin{bmatrix}
7 & 0 & 0\\
0 & 7 & 0\\
0 & 0 & 7
\end{bmatrix}\)
7 & 0 & 0\\
0 & 7 & 0\\
0 & 0 & 7
\end{bmatrix}\)
2. \(A = \begin{bmatrix}
\sqrt{3} & 0 & 0\\
0 & \sqrt{3} & 0\\
0 & 0 & \sqrt{3}
\end{bmatrix}\)
\sqrt{3} & 0 & 0\\
0 & \sqrt{3} & 0\\
0 & 0 & \sqrt{3}
\end{bmatrix}\)
6. Identity or unit matrix
In a square matrix, when all the leading diagonal elements are \(1\), then it is an identity matrix or a unit matrix.
0 & \text{ when } i \neq j \\
1 & \text{ when } i = j
\end{cases}\).
Example:
Let us look at a few identity matrices.
1. \(\begin{bmatrix}
1 & 0\\
0 & 1
\end{bmatrix}\)
1 & 0\\
0 & 1
\end{bmatrix}\)
2. \(\begin{bmatrix}
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{bmatrix}\)
1 & 0 & 0\\
0 & 1 & 0\\
0 & 0 & 1
\end{bmatrix}\)
7. Zero matrix or null matrix
A matrix is a zero matrix or a null matrix when all the matrix elements are zero.
Example:
Let us look at a few null matrices.
1. \(\begin{bmatrix}
0 & 0\\
0 & 0
\end{bmatrix}\)
0 & 0\\
0 & 0
\end{bmatrix}\)
2. \(\begin{bmatrix}
0 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 0
\end{bmatrix}\)
0 & 0 & 0\\
0 & 0 & 0\\
0 & 0 & 0
\end{bmatrix}\)
8. Transpose of a matrix
The transpose of a matrix is obtained by interchanging the elements in the rows and columns. The transpose of a matrix is denoted by \(A^T\), and \(A^T\) is read as '\(A\) \(\text{transpose}\)'.
If the order of matrix \(A\) is \( m \times n\), then the order of \(A^T\) is \(n \times m\).
Example:
Let us now look at a few examples.
1. If \(A = \begin{bmatrix}
1 & 2 & 3\\
4 & 5 & 6\\
7 & 8 & 9
\end{bmatrix}\), then \(A^T = \begin{bmatrix}
1 & 4 & 7\\
2 & 5 & 8\\
3 & 6 & 9
\end{bmatrix}\).
1 & 2 & 3\\
4 & 5 & 6\\
7 & 8 & 9
\end{bmatrix}\), then \(A^T = \begin{bmatrix}
1 & 4 & 7\\
2 & 5 & 8\\
3 & 6 & 9
\end{bmatrix}\).
2. If \(B = \begin{bmatrix}
1 & 2 & 3 & 4\\
5 & 6 & 7 & 8\\
9 & 10 & 11 & 12
\end{bmatrix}\), then \(B^T = \begin{bmatrix}
1 & 5 & 9\\
2 & 6 & 10\\
3 & 7 & 11\\
4 & 8 & 12
\end{bmatrix}\).
1 & 2 & 3 & 4\\
5 & 6 & 7 & 8\\
9 & 10 & 11 & 12
\end{bmatrix}\), then \(B^T = \begin{bmatrix}
1 & 5 & 9\\
2 & 6 & 10\\
3 & 7 & 11\\
4 & 8 & 12
\end{bmatrix}\).
9. Triangular matrix
If all the entries above the leading diagonal are zero in a square matrix, then it is a lower triangular matrix. If all the entries below the leading diagonal are zero, then it is an upper triangular matrix.
A matrix \(A\) is a upper triangular matrix if \(a_{ij}\) \(=\) \(0\) for \(i\) \(>\) \(j\). Similarly, matrix \(A\) is a lower triangular matrix if \(a_{ij}\) \(=\) \(0\) for \(i\) \(<\) \(j\).
Example:
Let us look at a few examples.
Upper triangular matrices:
\(A = \begin{bmatrix}
1 & 0 & 0\\
2 & 3 & 0\\
4 & 5 & 6
\end{bmatrix}\), \(B = \begin{bmatrix}
7 & 0 & 0\\
8 & 9 & 0\\
10 & 11 & 12
\end{bmatrix}\)
1 & 0 & 0\\
2 & 3 & 0\\
4 & 5 & 6
\end{bmatrix}\), \(B = \begin{bmatrix}
7 & 0 & 0\\
8 & 9 & 0\\
10 & 11 & 12
\end{bmatrix}\)
Lower triangular matrices:
\(C = \begin{bmatrix}
1 & 2 & 3\\
0 & 4 & 5\\
0 & 0 & 6
\end{bmatrix}\), \(D = \begin{bmatrix}
7 & 8 & 9\\
0 & 10 & 11\\
0 & 0 & 12
\end{bmatrix}\)
1 & 2 & 3\\
0 & 4 & 5\\
0 & 0 & 6
\end{bmatrix}\), \(D = \begin{bmatrix}
7 & 8 & 9\\
0 & 10 & 11\\
0 & 0 & 12
\end{bmatrix}\)