PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
In this section, let us discuss different types of matrices.
1. Row matrix
A matrix is a row matrix when it is made up of just one row and 'n' number of columns. Row matrices are also called row vectors.
For a matrix A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & … & a_{1n} \end{bmatrix}, the order of the matrix is 1 \times n.
Example:
Let us look at a few row matrices.
 
1. A = \begin{bmatrix} \sqrt{2} & \frac{\sqrt 7}{2} & 12 \end{bmatrix}, where the order of the matrix is 1 \times 3.
 
2. A = \begin{bmatrix} 7 & 14 & 21 & 28 & 35 & 42 & 49 \end{bmatrix}, where the order of the matrix is 1 \times 7.
2. Column matrix
A matrix is a column matrix comprised of 'm' rows and just one column. Column matrices are also called column vectors.
For a matrix A = \begin{bmatrix} a_{11}\\ a_{21}\\ a_{31}\\ \vdots\\ a_{m1} \end{bmatrix}, the order of the matrix is m \times 1.
Example:
Let us look at a few column matrices.
 
1. A = \begin{bmatrix} 2x\\ 3x\\ x \end{bmatrix}, where the order of the matrix is 3 \times 1.
 
2. A = \begin{bmatrix} 4\\ 8\\ 12\\ 16\\ 20 \end{bmatrix}, where the order of the matrix is 5 \times 1.
3. Square matrix
A matrix is a square matrix when the number of rows equals the number of columns. In other words, m = n.
The order of a square matrix is m.
Example:
Let us look at a few square matrices.
 
1. A = \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}, where the order of the matrix is 2 \times 2.
 
2. A = \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix}, where the order of the matrix is 3 \times 3.
Leading diagonal of a square matrix:
In a square matrix, the entries a_{ij} where i = j form the leading diagonal of a matrix.
Example:
Let us consider the matrix given below.
 
A = \begin{bmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{bmatrix}
 
Here, the elements a_{11}, a_{22} and a_{33} form the elements of the leading diagonal.
4. Diagonal matrix
In a square matrix, when all the entries except the leading diagonal is zero, then it is called a diagonal matrix. In other words, a_{ij} = 0 for i \neq j.
Example:
Let us look at a few diagonal matrices.
 
1. A = \begin{bmatrix} 1 & 0\\  0 & 4 \end{bmatrix}
 
2. A = \begin{bmatrix} 1 & 0 & 0\\  0 & 5 & 0\\  0 & 0 & 9 \end{bmatrix}
5. Scalar matrix
In a square matrix, when all the elements of the leading diagonal is the same, then it is a scalar matrix
The general representation of a scalar matrix A = (a_{ij})_{m \times n} is a_{ij} = \begin{cases} 0 & \text{ when } i \neq j \\ k & \text{ when } i = j \end{cases}, where k is a constant.
Example:
Let us look at a few scalar matrices.
 
1. A = \begin{bmatrix} 7 & 0 & 0\\  0 & 7 & 0\\  0 & 0 & 7 \end{bmatrix}
 
2. A = \begin{bmatrix} \sqrt{3} & 0 & 0\\  0 & \sqrt{3} & 0\\  0 & 0 & \sqrt{3} \end{bmatrix}
6. Identity or unit matrix
In a square matrix, when all the leading diagonal elements are 1, then it is an identity matrix or a unit matrix.
The general representation of a unit matrix A = (a_{ij})_{m \times n} is a_{ij} = \begin{cases} 0 & \text{ when } i \neq j \\  1 & \text{ when } i = j \end{cases}.
Example:
Let us look at a few identity matrices.
 
1. \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}
 
2. \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}
7. Zero matrix or null matrix
A matrix is a zero matrix or a null matrix when all the matrix elements are zero.
Example:
Let us look at a few null matrices.
 
1. \begin{bmatrix} 0 & 0\\ 0 & 0 \end{bmatrix}
 
2. \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}
8. Transpose of a matrix
The transpose of a matrix is obtained by interchanging the elements in the rows and columns. The transpose of a matrix is denoted by A^T, and A^T is read as 'A \text{transpose}'.
If the order of matrix A is m \times n, then the order of A^T is n \times m.
Example:
Let us now look at a few examples.
 
1. If A = \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix}, then A^T = \begin{bmatrix} 1 & 4 & 7\\ 2 & 5 & 8\\ 3 & 6 & 9 \end{bmatrix}.
 
2. If B = \begin{bmatrix} 1 & 2 & 3 & 4\\ 5 & 6 & 7 & 8\\ 9 & 10 & 11 & 12 \end{bmatrix}, then B^T = \begin{bmatrix} 1 & 5 & 9\\ 2 & 6 & 10\\ 3 & 7 & 11\\ 4 & 8 & 12 \end{bmatrix}.
9. Triangular matrix
If all the entries above the leading diagonal are zero in a square matrix, then it is a lower triangular matrix. If all the entries below the leading diagonal are zero, then it is an upper triangular matrix.
A matrix A is a upper triangular matrix if a_{ij} = 0 for i > j. Similarly, matrix A is a lower triangular matrix if a_{ij} = 0 for i < j.
Example:
Let us look at a few examples.
 
Upper triangular matrices:
 
A = \begin{bmatrix} 1 & 0 & 0\\ 2 & 3 & 0\\ 4 & 5 & 6 \end{bmatrix},   B = \begin{bmatrix} 7 & 0 & 0\\ 8 & 9 & 0\\ 10 & 11 & 12 \end{bmatrix}
 
Lower triangular matrices:
 
C = \begin{bmatrix} 1 & 2 & 3\\  0 & 4 & 5\\  0 & 0 & 6 \end{bmatrix},   D = \begin{bmatrix} 7 & 8 & 9\\  0 & 10 & 11\\  0 & 0 & 12 \end{bmatrix}