PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
Let us learn how to find the solution to the system of linear equations in three variables.
Example:
Solve the system of linear equations in three variables 6x + 4y - 2z = 12, -2x + 2y + z = 3, 2x + 2y + 2z = 8.
 
Solution:
 
Let us name the equations.
 
6x + 4y - 2z = 12 ---- (1)
 
-2x + 2y + z = 3 ---- (2)
 
2x + 2y + 2z = 8 ---- (3)
 
Step 1: Solving equations (2) and (3).
 
-2x + 2y + z = 3
 
 2x + 2y + 2z = 8
__________________________
            4y + 3z = 11 ---- (4)
 
Step 2: Similarly, let us eliminate the variable x from equations 1 and 2.
 
 6x + 4y -2z = 12
 
-6x + 6y + 3z = 9
__________________________
            10y + z = 21 ---- (5)
 
Step 3: Solve equations (4) and (5).
 
    4y + 3z = 11
 
  30y + 3z = 63
(-)    (-)      (-)
___________________________
- 26y = - 52
 
y = 2
 
Substitute the value of y in equation (5), we get:
 
20 + z = 21
 
z = 1
 
Step 4: Substitute the value of y and z in equation (1), we get:
 
6x + 4(2) - 2(1) = 12
 
6x + 8 - 2 = 12
 
6x + 6 = 12
 
6x = 6
 
x = 1
 
Therefore, the solution is x = 1, y = 2 and z = 1.