PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
Consider the equation ax^2 + bx + c = 0, where a \ne 0.
 
The roots of the quadratic equation are b+b24ac2a and bb24ac2a.
 
If \alpha and \beta are the roots of a quadratic equation ax^2 + bx + c = 0, then:
 
\alpha = b+b24ac2a and \beta = bb24ac2a
 
Sum of the roots = \alpha + \beta
 
= b+b24ac2a + bb24ac2a
 
= b+b24acbb24ac2a
 
= 2b2a=ba
Sum of the roots = \alpha + \beta = ba
Product of the roots = \alpha \beta
 
= b+b24ac2a \times bb24ac2a
 
= bb+bb24ac+b24acb+b24acb24ac2a×2a
 
= b2+bb24acbb24acb24ac4a2
 
= b2b2+4ac4a2
 
= 4ac4a2=ca
Product of the roots = \alpha \beta = ca
Since (x - \alpha) and (x - \beta) are factors of ax^2 + bx + c = 0:
 
(x - \alpha) (x - \beta) = 0
 
\Rightarrow x^2 - \alpha x - \beta x + \alpha \beta = 0
 
\Rightarrow x^2 - (\alpha + \beta) x + \alpha \beta = 0
 
\Rightarrow x^2 - (\text{sum of roots}) x + \text{product of roots} = 0
If \alpha and \beta are the roots of a quadratic equation, then the general formula to construct the quadratic equation is x^2 - (\alpha + \beta) x + \alpha \beta = 0.
 
That is, x^2 - (\text{sum of roots}) x + \text{product of roots} = 0.