UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
In this section, we will learn about geometric series.
 
Geometric series:
A geometric series is a series with all of its terms in a G.P.
Let us now try to find the sum of the \(n\) terms in a G.P.
 
Let the terms in G.P be \(a\), \(ar\), \(ar^2\), \(ar^3\),\(…\),\(ar^{n-1}\).
 
\(S_n\) \(=\) \(a\) \(+\) \(ar\) \(+\) \(ar^2\) \(+\) \(ar^3\) \(+...+\) \(ar^{n - 1}\) \(\longrightarrow (1)\)
 
On multiplying by \(r\) on both the sides, we get:
 
\(rS_n\) \(=\) \(ar\) \(+\) \(ar^2\) \(+\) \(ar^3\) \(+\) \(ar^4\) \(+...+\) \(ar^{n}\) \(\longrightarrow (2)\)
 
On subtracting \((2)\) from \((1)\), we get:
 
\(rS_n\) \(-\) \(S_n\) \(=\) \(ar^{n}\) \(-\) \(a\)
 
\(S_n\)\((r - 1)\) \(=\) \(a\)\((r^n -1)\)
 
\(S_n\) \(=\) \(\frac{a(r^n -1)}{r - 1}\)
 
Sum of \(n\) terms in a series when \(r\) \(=\) \(1\):
 
\(S_n\) \(=\) \(a\) \(+\) \(ar\) \(+\) \(ar^2\) \(+\) \(ar^3\) \(+...+\) \(ar^{n - 1}\)
 
\(S_n\) \(=\) \(a\) \(+\) \(a(1)\) \(+\) \(a(1)^2\) \(+\) \(a(1)^3\) \(+...+\) \(a(1)^{n - 1}\)
 
\(S_n\) \(=\) \(a\) \(+\) \(a\) \(+\) \(a\) \(+\) \(a\) \(+...+\) \(a\)
 
\(S_n\) \(=\) \(na\)
 
Sum of infinite terms in a series:
 
\(\text{Sum of infinite terms in a series}\) \(=\) \(a\) \(+\) \(ar\) \(+\) \(ar^2\) \(+\) \(ar^3\) \(+...\)
 
\(\text{Sum of infinite terms in a series}\) \(=\) \(\frac{a}{1 - r}\), \(-1 < r < 1\)