PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
In this topic, we shall learn how to perform arithmetic operations in modulo arithmetic.
 
Consider the following theorems.
Theorem I: a, b, c and d are integers, and m is a positive integer such that a \equiv b (mod \ m) and c \equiv d (mod \ m) then
 
(i) (a + c) \equiv (b + d) (mod \ m)
 
(ii) (a - c) \equiv (b - d) (mod \ m)
 
(iii) (a \times c) \equiv (b \times d) (mod \ m)
 
Theorem II: If a \equiv b (mod \ m) then
 
(i) ac \equiv bc (mod \ m)
 
(ii) a \pm c \equiv b \pm c (mod \ m) for any integer c.
Example:
If 13 \equiv 1 (mod \ 6) and 40 \equiv 4 (mod \ 6), then apply theorem I and find the values using addition, subtraction, and multiplication of the given modulo.
 
Solution:
 
(i) Addition:
 
13 + 40 \equiv 1 + 4 (mod \ 6)
 
53 \equiv 5 (mod \ 6)
 
(ii) Subtraction:
 
13 - 40 \equiv 1 - 4 (mod \ 6)
 
-27 \equiv -3 (mod \ 6)
 
(iii) Multiplication:
 
13 \times 40 \equiv 1 \times 4 (mod \ 6)
 
520 \equiv 4 (mod \ 6)