UPSKILL MATH PLUS
Learn Mathematics through our AI based learning portal with the support of our Academic Experts!
Learn moreThe natural numbers are 1, 2, 3, 4, …
We need to find the value of 1^2 + 2^2 + 3^2 + …. + n^2.
Consider the identity (x + 1)^{k + 1} - x^{k + 1}.
Since the power of all the numbers is 2, put k = 2 in the above identity.
(x + 1)^{2 + 1} - x^{2 + 1} = (x + 1)^3 - x^3
= x^3 + 3x^2 + 3x + 1^3 - x^3
= 3x^2 + 3x + 1
(x + 1)^3 - x^3 = 3x^2 + 3x + 1 - - - - (I)
Now, substitute x = 1, 2, 3, … n in equation (I).
When x = 1, 2^3 - 1^3 = 3(1)^2 + 3(1) + 1
When x = 2, 3^3 - 2^3 = 3(2)^2 + 3(2) + 1
When x = 3, 4^3 - 3^3 = 3(3)^2 + 3(3) + 1
\vdots \vdots \vdots
When x = n - 1, n^3 - (n - 1)^3 = 3(n - 1)^2 + 3(n - 1) + 1
When x = n, (n + 1)^3 - n^3 = 3(n)^2 + 3(n) + 1
Add all the above equations of x values.
2^3 - 1^3 + 3^3 - 2^3 + 4^3 - 3^3 + \cdots + n^3 - (n - 1)^3 + (n + 1)^3 - n^3 = 3(1)^2 + 3(1) + 1 + 3(2)^2 + 3(2) + 1 + 3(3)^2 + 3(3) + 1 + \cdots + 3(n - 1)^2 + 3(n - 1) + 1 + 3(n)^2 + 3(n) + 1
2^3 + 3^3 + 4^3 + \cdots + n^3 + (n + 1)^3 - (1^3 + 2^3 + 3^3 + \cdots + (n - 1)^3 + n^3) = 3(1^2 + 2^2 + 3^2 + \cdots + (n - 1)^2 + n^2) + 3(1 + 2 + 3 + \cdots (n - 1) + n) + (1 + 1 + 1 + ... n \ times )
By cancelling the same terms with opposite signs on the LHS, we get:
(n + 1)^3 - 1^3 = 3(1^2 + 2^2 + 3^2 + … (n - 1)^2 + n^2) + 3(1 + 2 + 3 + … (n - 1) + n) + n
n^3 + 3n^2 + 3n + 1^3 - 1^3 = 3(1^2 + 2^2 + 3^2 + … (n - 1)^2 + n^2) + 3(1 + 2 + 3 + … (n - 1) + n) + n
n^3 + 3n^2 + 3n = 3(1^2 + 2^2 + 3^2 + … (n - 1)^2 + n^2) + 3(1 + 2 + 3 + … (n - 1) + n) + n
Apply sum of first n terms of natural numbers formula in 1 + 2 + 3 + .. (n - 1) + n.
Therefore,
Sum of squares of first n natural numbers =