UPSKILL MATH PLUS
Learn Mathematics through our AI based learning portal with the support of our Academic Experts!
Learn moreAnswer variants:
\(x^2 - 12x + 36\)
\(x^2 - 6\)
\(\frac{3 - x}{3} - 1\)
\(\frac{8}{x^2} - 1\)
\(4x^2\)
\(\frac{9 - x}{3}\)
\(x - 1\)
\(\frac{2}{2x^2 - 1}\)
\(4x^2 + 8x + 3\)
Using the functions \(f\) and \(g\) given below, find \(f \circ g\) and \(g \circ f\). Check whether \(f \circ g = g \circ f\).
(i) \(f(x) = x - 6\), \(g(x) = x^2\)
\(f \circ g\) \(=\)
\(g \circ f\) \(=\)
So,
(ii) \(f(x) = \frac{2}{x}\), \(g(x) = 2x^2 - 1\)
\(f \circ g\) \(=\)
\(g \circ f\) \(=\)
So, .