PUMPA - SMART LEARNING
எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்
Book Free DemoSo far we have learned how to express the square units. Now, we shall learn the conversion of given square units.
Example:
Consider a rectangle of length of \(2\) \(cm\) and breadth \(1\) \(cm\). Find the area of the rectangle and convert its square units to \(mm^{2}\).
Solution:
The area of the rectangle \(= l \times b\)
\(= 2 \times 1\)
\(= 2 \ sq. \ cm\) or \(2 \ cm^{2}\)
Therefore, the area of the rectangle is \(2 \ cm^{2}\).
Now, let us convert \(cm\) to \(mm\).
We know that \(1 \ cm =\) \(10 \ mm\).
Which implies that the length of the rectangle \(=\) \(2 \ cm\) \(=\) \(2 \times 10 \ mm\) \(=\) \(20 \ mm\)
And the breadth of the rectangle \(=\) \(1 \ cm\) \(=\) \(10 \ mm\).
Thus, the area of the rectangle \(= l \times b\)
\(= 20 \times 10\)
\(= 200 \ mm^2\)
Hence, the area of the rectangle after conversion from \(cm\) to \(mm\) is \(200 \ mm^{2}\).
Important!
The conversions can be simply remembered as follows:
- \(1 \ cm^2\) \(=\) \(10 \ mm\)\(\times\)\(10 \ mm\) \(=\) \(100 \ mm^2\)
- \(1 \ m^2\) \(=\) \(100 \ cm\)\(\times\)\(100 \ cm\) \(=\) \(10000 \ cm^2\)
- \(1 \ km^2\) \(=\) \(1000 \ m\)\(\times\)\(1000 \ m\) \(=\) \(1000000 \ m^2\)