UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Identity \(- 4\): (a + b)(a − b)= a2b2
 
Let us first, simplify the identity (a + b)(a − b)= a2b2.
 
Multiply the expression, as shown below.
 
pic 1.png
 
Now, we construct a figure to understand the concept.
 
pic 3.png
 
Then we construct a rectangle using the above information.
 
In the given figure, \(AB = AD = a\).

So, the area of square \(ABCD = a^2\).
 
pic 2.png
 
Also, \(SB = DP = b\). Then the area of the rectangle \(SBCT = ab\).
 
Similarly, the area of the rectangle \(DPRC = ab\). And the area of the square \(TQRC = b^2\).
 
Area of the rectangle \(DPQT = ab − b^2\).
 
Hence, \(\text{the area of the rectangle APQS = The area of square ABCD}\) \(\text{– area of rectangle STCB}\) \(\text{+ area of rectangle DPQT}\).
 
=a2ab+(abb2)=a2ab+abb2=a2b2
 
Therefore, (a + b)(a − b)= a2b2.
Example:
Simplify (5x + 7)(5x  7) using the identity.
 
First, develop the given (5x + 7)(5x  7) expression using the identity (a + b)(a − b)= a2b2.
 
Here, \(a = 5x\); \(b = 7y\).
 
(5x + 7)(5x7)=(5x)2(7)2=52×x2(7)2=25x249
 
Therefore, (5x + 7)(5x  7) \(=\) 25\(x^2 -\)49.