PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
If A is the midpoint of RU and T is the midpoint of RN, prove that \triangle RAT \sim \triangle RUN.
 
YCIND_230118_4962_TN_GEO8_ST_50.png
 
Proof:
 
 StatementsReasons
1\angle ART = \angle URN
2RA = AU = \frac{1}{2}RU
3RT = TN = \frac{1}{2}RN
4\frac{RA}{RU} = \frac{RT}{RN} = \frac{1}{2}
5\triangle RAT \sim \triangle RUN
Answer variants:
by ASA (1 and 4)
The sides are proportional from 2 and 3.
T is the midpoint of RN
\angle R is common in \triangle RAT and \triangle RUN
A is the midpoint of RU
The sides are proportional from 1 and 2.
by SAS (1 and 4)