PUMPA - SMART LEARNING
எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்
Book Free DemoLet us consider two linear equations.
\(a_1x+b_1y+c_1 = 0\) ----- (\(1\))
\(a_2x+b_2y+c_2 = 0\) ----- (\(2\))
Where \(\frac{a_1}{a_2}\neq \frac{b_1}{b_2}\).
Now, let us solve these two equations.
Multiply equation (\(1\)) by \(b_2\) and equation (\(2\)) by \(b_1\).
Thus, we have:
\(x(a_1b_2-a_2b_1) =\)\(b_1c_2-b_2c_1\)
\(x=\frac{(b_1c_2-b_2c_1)}{(a_1b_2-a_2b_1)}\)
Similarly, let us multiply equation (\(1\)) by \(a_2\) and equation (\(2\)) by \(a_1\).
Thus, we have:
\(y(b_1a_2-b_2a_1) =\)\(c_2a_1-c_1a_2\)
\(y=\frac{(c_2a_1-c_1a_2)}{(b_1a_2-b_2a_1)}\)
Therefore, the solution to the given system of linear equations is
\(x = \frac{(b_1c_2-b_2c_1)}{(a_1b_2-a_2b_1)}\) and \(y = \frac{(c_1a_2-c_2a_1)}{(b_1a_2-b_2a_1)}\).
The other way to represent the solution is given by:
\(\frac{x}{b_1c_2-b_2c_1} = \frac{y}{c_1a_2-c_2a_1}\)\( = \frac{1}{a_1b_2-a_2b_1}\)
It can easily remembered as:
Let us consider an example to understand the concept clearly.
Example:
Solve the simultaneous linear equations \(2x+y = 8\) and \(x+2y = 10\) by cross multiplication method.
Solution:
Let us write the given equations in the form of \(ax+by+c = 0\).
\(2x+y-8 = 0\) ---- (\(1\))
\(x+2y-10 = 0\) ---- (\(2\))
Now, let us write the coefficients in the form of
Thus, we have:
\(\frac{x}{(1)(-10)-(2)(-8)}=\)\(\frac{y}{(-8)(1)-(-10)(2)} = \)\(\frac{1}{(2)(2)-(1)(1)}\)
\(\frac{x}{-10-(-16)} = \frac{y}{-8-(-20)} = \)\(\frac{1}{4-1}\)
\(\frac{x}{-10+16} = \frac{y}{-8+20}=\frac{1}{3}\)
\(\frac{x}{6} = \frac{y}{12}=\frac{1}{3}\)
\(\frac{x}{6} = \frac{1}{3}\) and \(\frac{y}{12} = \frac{1}{3}\)
\(x = \frac{6}{3}\) and \(y = \frac{12}{3}\)
\(x = 2\) and \(y = 4\)
Therefore, the solution is \(x = 2\) and \(y = 4\).