UPSKILL MATH PLUS
Learn Mathematics through our AI based learning portal with the support of our Academic Experts!
Learn moreImportant!
Let us recall difference of two sets.
For any three sets \(A\), \(B\) and \(C\):
(i) \(A - (B \cup C)\) \(=\) \((A-B) \cap (A-C)\)
(ii) \(A - (B \cap C)\) \(=\) \((A-B) \cup (A-C)\)
Example:
1. Let \(A\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\), \(B\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) and \(C\) \(=\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\).
Verify that \(A - (B \cup C)\) \(=\) \((A-B) \cap (A-C)\).
L.H.S: \(A - (B \cup C)\)
\(B \cup C\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) \(\cup\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
\(B \cup C\) \(=\) \(\{-3\), \(-1\), \(0\), \(1\), \(3\), \(4\), \(5\}\)
\(A - (B \cup C)\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-3\), \(-1\), \(0\), \(1\), \(3\), \(4\), \(5\}\)
\(A - (B \cup C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) - - - - - (I)
R.H.S: \((A-B) \cap (A-C)\)
\(A-B\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\)
\(A-B\) \(=\) \(\{-5\), \(-4\), \(2\}\)
\(A-C\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
\(A-C\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\)
\((A-B) \cap (A-C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) \(\cap\) \(\{-5\), \(-4\), \(0\), \(2\}\)
\((A-B) \cap (A-C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) - - - - - (II)
From (I) and (II), we see that:
\(A - (B \cup C)\) \(=\) \((A-B) \cap (A-C)\).
Hence verified.
2. Let \(A\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\), \(B\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) and \(C\) \(=\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\).
Verify that \(A - (B \cap C)\) \(=\) \((A-B) \cup (A-C)\).
L.H.S: \(A - (B \cap C)\)
\(B \cap C\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) \(\cap\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
\(B \cap C\) \(=\) \(\{\)\(-1\), \(1\), \(4\)\(\}\)
\(A - (B \cap C)\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{\)\(-1\), \(1\), \(4\)\(\}\)
\(A - (B \cap C)\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\) - - - - - (I)
R.H.S: \((A-B) \cup (A-C)\)
\(A-B\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\)
\(A-B\) \(=\) \(\{-5\), \(-4\), \(2\}\)
\(A-C\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
\(A-C\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\)
\((A-B) \cup (A-C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) \(\cup\) \(\{-5\), \(-4\), \(0\), \(2\}\)
\((A-B) \cup (A-C)\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\) - - - - - (II)
From (I) and (II), we see that:
\(A - (B \cap C)\) \(=\) \((A-B) \cup (A-C)\).
Hence verified.
Important!
L.H.S – Left Hand Side
R.H.S – Right Hand Side