UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Important!
Let us recall difference of two sets.
For any three sets \(A\), \(B\) and \(C\):
 
(i) \(A - (B \cup C)\) \(=\) \((A-B) \cap (A-C)\)
 
(ii) \(A - (B \cap C)\) \(=\) \((A-B) \cup (A-C)\)
Example:
1. Let \(A\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\), \(B\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) and \(C\) \(=\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\).
 
Verify that \(A - (B \cup C)\) \(=\) \((A-B) \cap (A-C)\).
 
L.H.S: \(A - (B \cup C)\)
 
\(B \cup C\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) \(\cup\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
 
\(B \cup C\) \(=\) \(\{-3\), \(-1\), \(0\), \(1\), \(3\), \(4\), \(5\}\)
 
\(A - (B \cup C)\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-3\), \(-1\), \(0\), \(1\), \(3\), \(4\), \(5\}\)
 
\(A - (B \cup C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) - - - - - (I)
 
R.H.S: \((A-B) \cap (A-C)\)
 
\(A-B\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\)
 
\(A-B\) \(=\) \(\{-5\), \(-4\), \(2\}\)
 
\(A-C\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
 
\(A-C\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\)
 
\((A-B) \cap (A-C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) \(\cap\) \(\{-5\), \(-4\), \(0\), \(2\}\)
 
\((A-B) \cap (A-C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) - - - - - (II)
 
From (I) and (II), we see that:
 
\(A - (B \cup C)\) \(=\) \((A-B) \cap (A-C)\).
 
Hence verified.
 
 
2. Let \(A\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\), \(B\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) and \(C\) \(=\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\).
 
Verify that \(A - (B \cap C)\) \(=\) \((A-B) \cup (A-C)\).
 
L.H.S: \(A - (B \cap C)\)
 
\(B \cap C\) \(=\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\) \(\cap\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
 
\(B \cap C\) \(=\) \(\{\)\(-1\), \(1\), \(4\)\(\}\)
 
\(A - (B \cap C)\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{\)\(-1\), \(1\), \(4\)\(\}\)
 
\(A - (B \cap C)\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\) - - - - - (I)
 
R.H.S: \((A-B) \cup (A-C)\)
 
\(A-B\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-1\), \(0\), \(1\), \(3\), \(4\}\)
 
\(A-B\) \(=\) \(\{-5\), \(-4\), \(2\}\)
 
\(A-C\) \(=\) \(\{-5\), \(-4\), \(-1\), \(0\), \(1\), \(2\}\) \(-\) \(\{-3\), \(-1\), \(1\), \(4\), \(5\}\)
 
\(A-C\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\)
 
\((A-B) \cup (A-C)\) \(=\) \(\{-5\), \(-4\), \(2\}\) \(\cup\) \(\{-5\), \(-4\), \(0\), \(2\}\)
 
\((A-B) \cup (A-C)\) \(=\) \(\{-5\), \(-4\), \(0\), \(2\}\) - - - - - (II)
 
From (I) and (II), we see that:
 
\(A - (B \cap C)\) \(=\) \((A-B) \cup (A-C)\).
 
Hence verified.
Important!
L.H.SLeft Hand Side
 
R.H.S – Right Hand Side