UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Answer variants:
12,14,1,2,52
0,2,4,5,6,7,8
0,2,3,4,5,6,7,8
14,2,52
14,2
12,0,14,34,2
5,7
0,14,34,2
0,14,34,2,52
1. If \(A =\) 12,0,14,34,2 and \(B =\) 0,14,34,2,52 and \(C =\) 12,14,1,2,52, then verify \(A \cap (B \cap C) = (A \cap B) \cap C\).
 
Proof:
 
\(B \cap C =\)
 
\(A \cap (B \cap C) =\)
 ---- (\(1\))
 
\(A \cap B =\)
 
\((A \cap B) \cap C =\)
 ---- (\(2\))
 
From equations (\(1\)) and (\(2\)), we have \(A \cap (B \cap C) = (A \cap B) \cap C\).
 
Hence, we proved.
 
 
2. If \(A = \{0, 2, 4, 6, 8\}\), \(B = \{x: x \ \text{is a prime number and} \ x < 11\}\) and \(C = \{x : x \in N \ \text{and} \ 5 \leq x < 9\}\) then verify \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\).
 
Proof:
 
\(B \cap C =\)
 
\(A \cup (B \cap C) =\)
 ---- (\(1\))
 
\(A \cup B =\)
 
\(A \cup C =\)
 
\((A \cup B) \cap (A \cup C) =\)
 ---- (\(2\))
 
From equations (\(1\)) and (\(2\)), we have \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\).
 
Hence, we proved.