UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Distributive property of intersection over union
For any three sets \(A\), \(B\) and \(C\): \(A \cap (B \cup C)\) \(=\) \((A \cap B)\) \(\cup\) \((A \cap C)\)
Let \(A\) \(=\) \(\{\)\(l\), \(m\), \(n\), \(o\), \(p\)\(\}\), \(B\) \(=\) \(\{\)\(n\), \(o\), \(p\), \(q\), \(r\)\(\}\) and \(C\) \(=\) \(\{\)\(l\), \(n\), \(p\), \(r\)\(\}\)
 
L.H.S: \(A \cap (B \cup C)\)
 
\(B \cup C\) \(=\) \(\{\)\(n\), \(o\), \(p\), \(q\), \(r\)\(\}\) \(\cup\) \(\{\)\(l\), \(n\), \(p\), \(r\)\(\}\)
 
\(B \cup C\) \(=\) \(\{\)\(l\), \(n\), \(o\), \(p\), \(q\), \(r\)\(\}\)
 
\(A \cap (B \cup C)\) \(=\) \(\{\)\(l\), \(m\), \(n\), \(o\), \(p\)\(\}\) \(\cap\) \(\{\)\(l\), \(n\), \(o\), \(p\), \(q\), \(r\)\(\}\)
 
\(A \cap (B \cup C)\) \(=\) \(\{\)\(l\), \(n\), \(o\), \(p\)\(\}\) - - - - - - - - - (I)
 
R.H.S: \((A \cap B)\) \(\cup\) \((A \cap C)\)
 
\(A \cap B\) \(=\) \(\{\)\(l\), \(m\), \(n\), \(o\), \(p\)\(\}\) \(\cap\) \(\{\)\(n\), \(o\), \(p\), \(q\), \(r\)\(\}\)
 
\(A \cap B\) \(=\) \(\{\)\(n\), \(o\), \(p\)\(\}\)
 
\(A \cap C\) \(=\) \(\{\)\(l\), \(m\), \(n\), \(o\), \(p\)\(\}\) \(\cap\) \(\{\)\(l\), \(n\), \(p\), \(r\)\(\}\)
 
\(A \cap C\) \(=\) \(\{\)\(l\), \(n\), \(p\)\(\}\)
 
\((A \cap B)\) \(\cup\) \((A \cap C)\) \(=\) \(\{\)\(n\), \(o\), \(p\)\(\}\) \(\cup\) \(\{\)\(l\), \(n\), \(p\)\(\}\)
 
\((A \cap B)\) \(\cup\) \((A \cap C)\) \(=\) \(\{\)\(l\), \(n\), \(o\), \(p\)\(\}\) - - - - - - - - - (II)
 
From (I) and (II), we see that:
 
\(A \cap (B \cup C)\) \(=\) \((A \cap B)\) \(\cup\) \((A \cap C)\)
 
This is called distributive property of intersection over union.
Distributive property of union over intersection
For any three sets \(A\), \(B\) and \(C\): \(A \cup (B \cap C)\) \(=\) \((A \cup B)\) \(\cap\) \((A \cup C)\)
Let \(A\) \(=\) \(\{\)\(l\), \(m\), \(n\), \(o\), \(p\)\(\}\), \(B\) \(=\) \(\{\)\(n\), \(o\), \(p\), \(q\), \(r\)\(\}\) and \(C\) \(=\) \(\{\)\(l\), \(n\), \(p\), \(r\)\(\}\)
 
L.H.S: \(A \cup (B \cap C)\)
 
\(B \cap C\) \(=\) \(\{\)\(n\), \(o\), \(p\), \(q\), \(r\)\(\}\) \(\cap \) \(\{\)\(l\), \(n\), \(p\), \(r\)\(\}\)
 
\(B \cap C\) \(=\) \(\{\)\(n\), \(p\), \(r\)\(\}\)
 
\(A \cup (B \cap C)\) \(=\) \(\{\)\(l\), \(m\), \(n\), \(o\), \(p\)\(\}\) \(\cup \) \(\{\)\(n\), \(p\), \(r\)\(\}\)
 
\(A \cup (B \cap C)\) \(=\) \(\{\)\(l\), \(m\), \(n\), \(o\), \(p\), \(r\)\(\}\) - - - - - - - - - (I)
 
R.H.S: \((A \cup B)\) \(\cap\) \((A \cup C)\)
 
\(A \cup B\) \(=\) \(\{\)\(l\), \(m\), \(n\), \(o\), \(p\)\(\}\) \(\cup \) \(\{\)\(n\), \(o\), \(p\), \(q\), \(r\)\(\}\)
 
\(A \cup B\) \(=\) \(\{\)\(l\), \(m\), \(n\), \(o\), \(p\), \(q\), \(r\)\(\}\)
 
\(A \cup C\) \(=\) \(\{\)\(l\), \(m\), \(n\), \(o\), \(p\)\(\}\) \(\cup \) \(\{\)\(l\), \(n\), \(p\), \(r\)\(\}\)
 
\(A \cup C\) \(=\) \(\{\)\(l\), \(m\), \(n\), \(o\), \(p\), \(r\)\(\}\)
 
\((A \cup B)\) \(\cap \) \((A \cup C)\) \(=\) \(\{\)\(l\), \(m\), \(n\), \(o\), \(p\), \(q\), \(r\)\(\}\) \(\cap \) \(\{\)\(l\), \(m\), \(n\), \(o\), \(p\), \(r\)\(\}\)
 
\((A \cup B)\) \(\cap \) \((A \cup C)\) \(=\) \(\{\)\(l\), \(m\), \(n\), \(o\), \(p\), \(r\)\(\}\) - - - - - - - - - (II)
 
From (I) and (II), we see that:
 
\(A \cup (B \cap C)\) \(=\) \((A \cup B)\) \(\cap \) \((A \cup C)\)
 
This is called distributive property of intersection over union.
 
Important!
L.H.S – Left Hand Side
 
R.H.S – Right Hand Side