PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
Consider the frequency distribution table.
 
Height (in m)30 - 4040 - 5050 - 6060 - 7070 - 80
Number of trees1241562001010
 
The above frequency table shows that the data are grouped in class intervals. This table shows that the number of trees with various heights.
 
Consider the interval 50 - 60. There are 200 trees in the heights between 50 - 60 metres. In grouped frequency, the individual observations are not available. Thus, we need to determine the value that indicates the particular interval. This value is called a midpoint or class mark. The midpoint can be determined using the formula:
 
Midpoint = \frac{UCL + LCL}{2}
 
Where UCL is the upper class limit and LCL is the lower class limit.
Example:
Consider the interval 40 - 50. Let us find the midpoint of this interval.
 
Here, UCL = 40 and LCL = 50
 
Midpoint of 40 - 50 is \frac{40 + 50}{2} = \frac{90}{2} = 45
 
Therefore, the midpoint of the interval 40 - 50 is 45.
The arithmetic mean of a grouped frequency distribution can be determined using any one of the following methods.
  • Direct method
  • Assumed mean method
  • Step deviation method