
PUMPA - SMART LEARNING
எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்
Book Free DemoConsider the frequency distribution table.
Height (in m) | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 |
Number of trees | 124 | 156 | 200 | 10 | 10 |
The above frequency table shows that the data are grouped in class intervals. This table shows that the number of trees with various heights.
Consider the interval 50 - 60. There are 200 trees in the heights between 50 - 60 metres. In grouped frequency, the individual observations are not available. Thus, we need to determine the value that indicates the particular interval. This value is called a midpoint or class mark. The midpoint can be determined using the formula:
Midpoint = \frac{UCL + LCL}{2}
Where UCL is the upper class limit and LCL is the lower class limit.
Example:
Consider the interval 40 - 50. Let us find the midpoint of this interval.
Here, UCL = 40 and LCL = 50
Midpoint of 40 - 50 is \frac{40 + 50}{2} = \frac{90}{2} = 45
Therefore, the midpoint of the interval 40 - 50 is 45.
The arithmetic mean of a grouped frequency distribution can be determined using any one of the following methods.
- Direct method
- Assumed mean method
- Step deviation method