PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
The median of an ungrouped frequency distribution can be determined using the following steps.
 
1. Arrange the given data in ascending or descending order.
 
2. Find the cumulative frequency distribution and denote N as the total frequency.
 
3. If N is odd, then median = \left(\frac{N + 1}{2} \right)^{th} term.
 
4. If N is even, then median = \left(\frac{(\frac{N}{2}^{th}) \text{observation} + (\frac{N}{2}+1)^{th} \text{observation}}{2} \right)
Example:
Find the median of the following data.
 
Marks303560928575
Number of students1462107
 
Solution:
 
Let us arrange the marks in ascending order and find the cumulative frequency.
 
Marks
Frequency
(f)
Cumulative frequency
(cf)
3011
3541 + 4 = 5
6065 + 6 = 11
75711 + 7 = 18
851018 + 10 = 28
92228 + 2 = 30
 
Therefore, the total frequency N = 30.
 
Since N is even, the median can be determined using the formula \left(\frac{(\frac{N}{2}^{th}) \text{observation} + (\frac{N}{2}+1)^{th} \text{observation}}{2} \right)
 
Substituting the known values, we get:
 
Median = \left(\frac{(\frac{30}{2}^{th}) \text{observation} + (\frac{30}{2}+1)^{th} \text{observation}}{2} \right)
 
= \left(\frac{15^{th} \text{observation} + 16^{th} \text{observation}}{2} \right)
 
If the marks of the students are arranged in ascending order, then the 15^{th} and 16^{th} terms would be in the middle value. From the cumulative frequency distribution, let us select the marks near the 15^{th} and 16^{th} terms. Thus, the marks would be 75.
 
Substituting these values in the median, we have:
 
Median = \frac{75+75}{2} =75
 
Therefore, the median of the given data is 75.