PDF chapter test TRY NOW

1. From the given figure, prove that \(\theta + \phi = 90^{\circ}\). Also prove that there are two other right angled triangles. Find \(sin \ \alpha\), \(cos \ \beta\) and \(tan \ \phi\).
 
YCIND20220816_4275_Trignometry_16.png
 
Answer:
 
\(sin \ \alpha =\) ii
 
\(cos \ \beta =\) ii
 
\(tan \ \phi =\) ii
 
2. Verify \(cos \ 90^{\circ} = 1 - 2 \ sin^2 \ 45^{\circ} = 2 \ cos^2 \ 45^{\circ} - 1\)
 
Proof:
 
\(cos \ 90^{\circ} =\)
 
\(1 - 2 \ sin^2 \ 45^{\circ} =\)
 
\(2 \ cos^2 \ 45^{\circ} - 1 =\)
 
Thus, \(cos \ 90^{\circ} = 1 - 2 \ sin^2 \ 45^{\circ} = 2 \ cos^2 \ 45^{\circ} - 1\).
 
Hence, we proved.