PDF chapter test TRY NOW

If \(sec \ \theta = \frac{13}{5}\), then show that \(\frac{2 sin \ \theta - 3 cos \ \theta}{4 sin \ \theta - 9 cos \ \theta} = 3\).
 
Proof:
 
\(2 sin \ \theta =\) ii
 
\(3 cos \ \theta =\) ii
 
\(4 sin \ \theta =\) ii
 
\(9 cos \ \theta =\) ii
 
\(\frac{2 sin \ \theta - 3 cos \ \theta}{4 sin \ \theta - 9 cos \ \theta} =\)
 
Since LHS \(=\) RHS, then \(\frac{2 sin \ \theta - 3 cos \ \theta}{4 sin \ \theta - 9 cos \ \theta} = 3\).
 
Hence, we proved.