PDF chapter test TRY NOW
சாகுல் \(6\) மிட்டாய்களை \(₹30\)க்கும், மற்றும் ராம் \(11\) மிட்டாய்களை \(₹55\)க்கும் வாங்கினாா்கள்.
யாருடைய மிட்டாய் விலை அதிகம் என்று உங்களால் யூகிக்க முடிகிறதா?
செலவை ஒப்பிட்டுப் பார்க்க, விகிதக் கருத்தைப் பயன்படுத்துவோம்.
மிட்டாய்களின் எண்ணிக்கை மற்றும் சாகுல் வாங்கிய விலையின் விகிதம் \(=\) \(6:30\).
\(6\) ஆல் வகுத்தால் ஆக இது எளிமையான வடிவம்.
ராம் வாங்கிய விலைக்கு மிட்டாய்களின் எண்ணிக்கையின் விகிதம் \(=\) \(11:55\).
\(6\) ஆல் வகுத்தால் ஆக இது எளிமையான வடிவம்.
இரண்டு விகிதங்களும் சமம் என்பதை நினைவில் கொள்க.
சாகுல் மற்றும் ராம் இருவரும் ஒரே விலைக்கு மிட்டாய்களை வாங்கினார்கள்.
\(a:b\) மற்றும் \(c:d\) ஆகிய இரண்டு விகிதங்கள் சமமாக இருந்தால், அவை விகிதாச்சாரத்தில் உள்ளன என்று கூறுகிறோம். விகிதத்தைக் குறிக்க \('::'\) அல்லது \('='\) குறியீட்டைப் பயன்படுத்தவும்.
Example:
கொடுக்கப்பட்ட விகிதங்கள் சமம் சமம்/விகிதசமமாக உள்ளதா என்பதைச் சரிபார்க்கவும்.
1. \(2:4\) மற்றும் \(8:16\).
பின்வருமாறு முதல் விகிதத்தை எளிய வடிவத்திற்கு குறைக்க:
பின்வருமாறு இரண்டாம் விகிதத்தை எளிய வடிவத்திற்கு குறைக்க :
இங்கே கொடுக்கப்பட்ட விகிதங்களின் எளிய வடிவம் சமம். எனவே, இரண்டு விகிதங்களும் விகிதச் சமம் ஆகும்.
2. \(9:4\) \(18:6\)
முதல் விகிதம் \(9:4\) ஏற்கனவே எளிமையான வடிவத்தில் உள்ளது. எனவே இரண்டாவது விகிதத்தை குறைப்போம்.
கொடுக்கப்பட்ட விகிதங்களின் எளிமையான வடிவம் சமமாக இல்லை என்பதை நினைவில் கொள்ள வேண்டும். எனவே, இரண்டு விகிதங்களும் விகிதச் சமம் இல்லை.