
PUMPA - SMART LEARNING
எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்
Book Free Demoஅறிவியல் குறியீட்டில் உள்ள எண்களை கணக்கிடுவதற்காண பண்புகள் கீயே கொடுக்கப்பட்டுள்ளன:
1. அறிவியல் குறியீட்டில் உள்ள எண்களின் அடுக்குகள் சமமாக இருந்தால், அவற்றின் கூட்டல் அல்லது கழித்தல் செயலை எளிமையாகச் செய்துவிடலாம்.
2. மூலக்குறியீட்டு விதிகளை சரியாக பயன்படுத்தி, அறிவியல் குறியீட்டில் உள்ள எண்களின் பெருக்கல் மற்றும் வகுத்தலை எளிமையாகச் செய்துவிடலாம.
Example:
1. கூட்டல் முறையை பயன்படுத்தி தீர்க்க: 6.83 \times 10^{20} மற்றும் 3.72 \times 10^{20}
தீர்வு:
6.83 \times 10^{20} + 3.72 \times 10^{20} = (6.83 + 3.72) \times 10^{20} = 10.55 \times 10^{20}
எனவே, தீர்வானது 10.55 \times 10^{20} ஆகும்.
2. (6300000)^{2} \times (12000000)^3 அறிவியல் குறியீட்டில் எழுதுக.
தீர்வு:
(600000)^{2} \times (2000000)^3 = (6 \times 10^5)^2 \times (2 \times 10^6)^3
= (6)^2 \times (10^5)^2 \times (2)^3 \times (10^6)^3
= (36) \times 10^{10} \times (8) \times 10^{18}
= (3.6 \times 10^1) \times 10^{10} \times (8) \times 10^{18}
= 3.6 \times 8 \times 10^1 \times 10^{10} \times 10^{18}
= 28.8 \times 10^{1+10+18}
= 2.88 \times 10^1 \times 10^{29}
= 2.88 \times 10^{30}
எனவே, அறிவியல் குறியீட்டானதாகும் 2.88 \times 10^{30}.
3. (200000000)^4 \div (0.00000004)^3 அறிவியல் குறியீட்டில் எழுதுக.
தீர்வு:
(200000000)^6 \div (0.0000004)^3 = (2 \times 10^8)^6 \div (4 \times 10^{-7})^3
= \frac{(2)^6 \times (10^8)^6}{(4)^3 \times (10^{-7})^3}
= \frac{64 \times 10^{48}}{64 \times 10^{-21}}
= 1 \times 10^{48} \times 10^{21}
= 1 \times 10^{69}
எனவே, தீர்வானது 1 \times 10^{69} ஆகும்.