PDF chapter test TRY NOW

Answer variants:
cos2θsinθsin2θcosθ1sinθcosθ
1sinθsinθ1cosθcosθsinθcosθ+sinθcosθ
1sinθsinθ1cosθcosθsinθcosθ+cosθsinθ
cos2θ×sin2θ×1sin2θ×cos2θ
1+sin2θsinθ1+cos2θcosθsin2θ+cos2θsinθcosθ
1sin2θsinθ1cos2θcosθsin2θ+cos2θsinθcosθ
Prove that cosecθsinθsecθcosθtanθ+cotθ = 1.
 
Proof:
 
LHS = cosecθsinθsecθcosθtanθ+cotθ
 
=
 
=
 
=
 
=
 
= 1 = RHS