PDF chapter test TRY NOW

Answer variants:
sin2α1sin2βsin2β1sin2αcos2αcos2β
sin2αcos2αsin2βcos2β
sin2αcos2αsin2βcos2βcos2αcos2β
sin2α+sin2αsin2βsin2β+sin2βsin2αcos2αcos2β
sin2αcos2βsin2βcos2αcos2αcos2β
sin2αsin2αsin2βsin2β+sin2βsin2αcos2αcos2β
Show that tan2αtan2β \(=\) sin2αsin2βcos2αcos2β.
 
Proof:
 
LHS \(=\) tan2αtan2β
 
\(=\)
 
\(=\)
 
\(=\)
 
\(=\)
 
\(=\) sin2αsin2βcos2αcos2β \(=\) RHS