PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
Cyclic Quadrilateral
A four-sided figure inscribed in a circle such that all its vertices lie on the circumference of the circle is said to be a cyclic quadrilateral.
 
Cyclic quad.png
Theorem: The sum of either pair of opposite angles of a cyclic quadrilateral is 180^{\circ}.
Explanation:
 
Theorem 6.png
 
The theorem states that the sum of the interior opposite angles of a cyclic quadrilateral is 180^{\circ}.
 
That is, \angle A + \angle C = 180^{\circ}.
 
And \angle B + \angle D = 180^{\circ}.
 
Proof of the theorem:
 
Consider a quadrilateral ABCD whose vertices lie on the circumference of the circle with centre O.
 
Connect all the four vertices with centre O to get four isosceles triangle AOB, BOC, COD and DOA where the sides OA, OB, OC and OD are the radii.
 
Theorem 6 exp.png
 
The sum of the angles around the centre of a circle is 360^{\circ}.
 
Also, the sum of all the interior angles of a triangle is 180^{\circ}.
 
Hence:
 
w+w+AOD=180°x+x+AOB=180°y+y+BOC=180°z+z+COD=180°
 
Adding all the equations we have:
 
2 (\angle w + \angle x + \angle y + \angle z) + \angle O = 4\times180^{\circ}
 
2 (\angle w + \angle x + \angle y + \angle z) + 360^{\circ} = 720^{\circ}
 
2 (\angle w + \angle x + \angle y + \angle z) = 720^{\circ} - 360^{\circ}
 
2 (\angle w + \angle x + \angle y + \angle z) = 360^{\circ}
 
\angle w + \angle x + \angle y + \angle z = 180^{\circ}
 
This is rewritten as, \angle A + \angle C = 180^{\circ}.
 
Similarly, \angle B + \angle D = 180^{\circ}.
Example:
Find the unknown angle x in the given figure.
 
Theorem 6 eg.png
 
Solution:
 
By the theorem, opposite angles of a cyclic quadrilateral are supplementary.
 
This implies:
 
\angle A + \angle C = 180^{\circ}
 
x + 115^{\circ} = 180^{\circ}
 
x  = 180^{\circ} - 115^{\circ}
 
x = 65^{\circ}
Converse of Theorem: If the sum of a pair of opposite angles of a quadrilateral is 180^{\circ}, the quadrilateral is cyclic.
Explanation:
 
Theorem 6 con.png
 
The theorem states that if the sum of the interior opposite angles of any quadrilateral is  180^{\circ}, then that quadrilateral is said to be cyclic. Here, in the figure, the sum of the \angle A and \angle C is 180^{\circ}.
 
90^{\circ} + 90^{\circ} = 180^{\circ}
 
Thus, the quadrilateral ABCD is cyclic.
Example:
Prove that a square inscribed in a circle is cyclic.
 
Proof:
 
Let ABCD be the square inscribed in a circle.
 
Theorem 6 con eg.png
 
It is known that every angle of a square is 90^{\circ}.
 
Here \angle A + \angle C = 90^{\circ} + 90^{\circ}
 
Implies, \angle A + \angle C = 180^{\circ}
 
Similarly, \angle B + \angle D = 90^{\circ} + 90^{\circ}
 
Implies, \angle B + \angle D = 180^{\circ}
 
According to the theorem, the pair of opposite angles of the square is supplementary.
 
Hence the square inscribed in a circle is cyclic.