PDF chapter test TRY NOW

Theorem IV
In a parallelogram, opposite angles are equal.
 
A2.png
 
Given: ABCD is a parallelogram.
 
Construction: Join the diagonal AC.
 
To prove: \angle A = \angle C and \angle B = \angle D
 
Proof: We know that "opposite sides of a parallelogram are parallel".
 
AB \ || \ CD and BC \ || \ AD
 
Since AB \ || \ CD and AC is a transversal.
 
\angle BAC = \angle DCA [alternate interior angles] - - - - - (I)
 
Also, AD \ || \ BC and AC is a transversal.
 
\angle DAC = \angle BCA [alternate interior angles] - - - - - (II)
 
Add equations (I) and (II).
 
\angle BAC + \angle DAC = \angle DCA + \angle BCA
 
\angle BAD = \angle DCB
 
That is, \angle A = \angle C - - - - - - (III)
 
Now, join the diagonal BD.
 
A4.png
 
Since AB \ || \ CD and BD is a transversal.
 
\angle ABD = \angle CDB [alternate interior angles] - - - - - (IV)
 
Also, AD \ || \ BC and BD is a transversal.
 
\angle CBD = \angle ADB [alternate interior angles] - - - - - (V)
 
Add equations (IV) and (V).
 
\angle ABD + \angle CBD = \angle CDB + \angle ADB
 
\angle ABC = \angle ADC
 
That is, \angle B = \angle D - - - - - - (VI)
 
From (III) and (VI), we get:
 
The opposite angles of a parallelogram are equal.
Theorem V
If in a quadrilateral, each pair of opposite angles is equal, then it is a parallelogram.
 
A5.png
 
Given: ABCD is a quadrilateral, where \angle A = \angle C and \angle B = \angle D.
 
To prove: ABCD is a parallelogram.
 
Proof: By angle sum property of a quadrilateral:
 
\angle A + \angle B + \angle C + \angle D = 360^\circ
 
\angle A + \angle B + \angle A + \angle B = 360^\circ (Using given)
 
2 \angle A + 2 \angle B = 360^\circ
 
2 ( \angle A + \angle B) = 360^\circ
 
\angle A + \angle B = 180^\circ - - - - (I)
 
Now, consider AB is the transversal for the lines AD and BC.
 
\angle A and \angle B are interior angles on the same side of transversal line AB.
 
"Two lines cut by a transversal are parallel if and only if sum of interior angles on the same side of the transversal are 180^\circ".
 
Since \angle A + \angle B = 180^\circ
 
\Rightarrow AD \ || \ BC - - - - - (II)
 
Similarly, \angle A + \angle B + \angle C + \angle D = 360^\circ
 
\angle A + \angle D + \angle A + \angle D = 360^\circ (Using given)
 
2 \angle A + 2 \angle D = 360^\circ
 
2 ( \angle A + \angle D) = 360^\circ
 
\angle A + \angle D = 180^\circ - - - - (III)
 
Similarly, AD is the transversal for lines AB and DC.
 
\angle A and \angle D are interior angles on the same side of transversal line AD.
 
"Two lines cut by a transversal are parallel if and only if sum of interior angles on the same side of the transversal are 180^\circ".
 
Since \angle A + \angle D = 180^\circ
 
\Rightarrow AB \ || \ DC - - - - - (IV)
 
From equations (II) and (IV), we get:
 
AD \ || \ BC and AB \ || \ DC
 
Both pair of opposite sides are parallel.
 
Therefore, ABCD is a parallelogram.