UPSKILL MATH PLUS
Learn Mathematics through our AI based learning portal with the support of our Academic Experts!
Learn moreHemisphere:
A one half of a sphere is called a hemisphere.
Volume of a hemisphere:
Let \(r\) be the radius of a sphere.
Volume of a hemisphere \(=\) \(\times\) Volume of a sphere
\(=\)
\(=\)
Volume of a hemisphere \(=\) cu. units
Example:
The radius of the hemisphere is \(14 \ cm\). Find the volume of the hemisphere in grams if \(1 \ cm^3 = 0.4 \ g\).
Solution:
Radius of the hemisphere \((r)\) \(=\) \(14 \ cm\)
Volume of the hemisphere \(=\) cu. units
\(=\)
\(=\)
\(=\) \(5749.33\) \(cm^3\)
Now, convert \(cm^3\) to \(g\).
\(1 \ cm^3\) \(=\) \(0.4 \ g\)
\(5749.33 \ cm^3\) \(=\) \(5749.33 \times 0.4\) \(=\) \(2299.732 \ g\)
Therefore, the volume of the hemisphere is \(2299.732 \ g\).
Important!
The value of \(\pi\) should be taken as unless its value is shared in the problem.