UPSKILL MATH PLUS
Learn Mathematics through our AI based learning portal with the support of our Academic Experts!
Learn moreMatrices also follow the certain properties such as whole numbers and integers. Generally, there are four properties of a matrix in terms of addition and scalar multiplication as follows:
1. Commutative property
2. Associative property
3. Scalar identity for unit matrix
4. Distributive property
Let's dive into each property individually with an example.
Let \(A\), \(B\), \(C\) be \(m×n\) matrices and \(p\) and \(q\) be two non-zero scalars (numbers). Then we have the following properties.
Commutative property of matrix addition:
Changing the order of the matrices does not change the result of the matrices.
\(A + B = B + A\)
Example:
Consider the matrices \( A = \begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}, B = \begin{bmatrix}
5 & 6\\
7 & 8
\end{bmatrix}\) then verify that \(A + B = B + A\)
1 & 2 \\
3 & 4
\end{bmatrix}, B = \begin{bmatrix}
5 & 6\\
7 & 8
\end{bmatrix}\) then verify that \(A + B = B + A\)
Solution:
First, we find the sum of \(A + B\) matrices.
\( A + B = \begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}+ \begin{bmatrix}
5 & 6\\
7 & 8
\end{bmatrix} = \begin{bmatrix}
1+5 & 2+6\\
3+7 & 4+8
\end{bmatrix}=\begin{bmatrix}
6& 8\\
10& 12
\end{bmatrix}\)………..(1)
1 & 2 \\
3 & 4
\end{bmatrix}+ \begin{bmatrix}
5 & 6\\
7 & 8
\end{bmatrix} = \begin{bmatrix}
1+5 & 2+6\\
3+7 & 4+8
\end{bmatrix}=\begin{bmatrix}
6& 8\\
10& 12
\end{bmatrix}\)………..(1)
Similarly, let's find \(B + A\).
\( B + A = \begin{bmatrix}
5 & 6 \\
7 & 8
\end{bmatrix}+ \begin{bmatrix}
1 & 2\\
3 & 4
\end{bmatrix} = \begin{bmatrix}
5+1 & 6+2\\
7+3 & 8+4
\end{bmatrix}=\begin{bmatrix}
6& 8\\
10& 12
\end{bmatrix}\)………..(2)
5 & 6 \\
7 & 8
\end{bmatrix}+ \begin{bmatrix}
1 & 2\\
3 & 4
\end{bmatrix} = \begin{bmatrix}
5+1 & 6+2\\
7+3 & 8+4
\end{bmatrix}=\begin{bmatrix}
6& 8\\
10& 12
\end{bmatrix}\)………..(2)
From \((1), (2)\) we can see that \(A + B = B + A\). Thus, the given matrices are satisfy the Commutative property of matrices.
Associative property:
1. Associative property of matrix addition:
It says that rearranging parenthesis in the matrix expression will not change the result of the matrices.
\((A + B)+ C = A + (B+C)\)
Example:
If \( A = \begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}, B = \begin{bmatrix}
5 & 6\\
7 & 8
\end{bmatrix}, C = \begin{bmatrix}
9 & 10\\
11 & 12
\end{bmatrix}\) then verify that \((A + B)+ C = A + (B+C)\).
1 & 2 \\
3 & 4
\end{bmatrix}, B = \begin{bmatrix}
5 & 6\\
7 & 8
\end{bmatrix}, C = \begin{bmatrix}
9 & 10\\
11 & 12
\end{bmatrix}\) then verify that \((A + B)+ C = A + (B+C)\).
Solution:
First we find the sum of \(A + B\) matrices then add it's result with the \(C) matrix.
\((A + B) + C= \left (\begin{bmatrix}
1 & 2\\
3 & 4
\end{bmatrix}+ \begin{bmatrix}
5 & 6\\
7 & 8
\end{bmatrix}\right ) + \begin{bmatrix}
9 & 10\\
11 & 12
\end{bmatrix}\)
1 & 2\\
3 & 4
\end{bmatrix}+ \begin{bmatrix}
5 & 6\\
7 & 8
\end{bmatrix}\right ) + \begin{bmatrix}
9 & 10\\
11 & 12
\end{bmatrix}\)
\(=\begin{bmatrix}
1+5 & 2+6\\
3+7 & 4+8
\end{bmatrix}+ \begin{bmatrix}
9 & 10\\
11 & 12
\end{bmatrix}\)
1+5 & 2+6\\
3+7 & 4+8
\end{bmatrix}+ \begin{bmatrix}
9 & 10\\
11 & 12
\end{bmatrix}\)
\(=\begin{bmatrix}
6 & 8\\
10 & 12
\end{bmatrix}+ \begin{bmatrix}
9 & 10\\
11 & 12
\end{bmatrix}\)
6 & 8\\
10 & 12
\end{bmatrix}+ \begin{bmatrix}
9 & 10\\
11 & 12
\end{bmatrix}\)
\(=\begin{bmatrix}
6+9 & 8+10\\
10+11 & 12+12
\end{bmatrix}= \begin{bmatrix}
15 & 18\\
21 & 24
\end{bmatrix}\)……….(1)
6+9 & 8+10\\
10+11 & 12+12
\end{bmatrix}= \begin{bmatrix}
15 & 18\\
21 & 24
\end{bmatrix}\)……….(1)
Similarly, let's find \(A + (B + C)\).
\(A + ( B + C) =\begin{bmatrix}
1 & 2\\
3 & 4
\end{bmatrix}+ \begin{bmatrix}
5+9 & 6+10\\
7+11 & 8+12
\end{bmatrix}\)
1 & 2\\
3 & 4
\end{bmatrix}+ \begin{bmatrix}
5+9 & 6+10\\
7+11 & 8+12
\end{bmatrix}\)
\( =\begin{bmatrix}
1 & 2\\
3 & 4
\end{bmatrix}+ \begin{bmatrix}
14 & 16\\
18 & 20
\end{bmatrix}\)
1 & 2\\
3 & 4
\end{bmatrix}+ \begin{bmatrix}
14 & 16\\
18 & 20
\end{bmatrix}\)
\(= \begin{bmatrix}
1+14 & 2+16\\
18+3 & 4+20
\end{bmatrix}=\begin{bmatrix}
15 & 18\\
21 & 24
\end{bmatrix}\)……….(2)
1+14 & 2+16\\
18+3 & 4+20
\end{bmatrix}=\begin{bmatrix}
15 & 18\\
21 & 24
\end{bmatrix}\)……….(2)
2. Associative property of scalar multiplication - \((pq)A = p(Aq)\)
Example:
Verify the associative property if \( A = \begin{bmatrix}
2 & 4\\
6 & 8
\end{bmatrix}\) and \( p = 4\) and \(q = 6\).
2 & 4\\
6 & 8
\end{bmatrix}\) and \( p = 4\) and \(q = 6\).
Solution:
We know the associative property of scalar multiplication is \((pq)A = p(Aq)\). Here, \(p = 4\) and \(q = 6\).
So, \((4 × 6) A = (4 × 6) \begin{bmatrix}
2 & 4\\
6 & 8
\end{bmatrix}\)
2 & 4\\
6 & 8
\end{bmatrix}\)
\(= 24\begin{bmatrix}
2 & 4\\
6 & 8
\end{bmatrix} = \begin{bmatrix}
48 & 96\\
144 & 192
\end{bmatrix}\)……….(1)
2 & 4\\
6 & 8
\end{bmatrix} = \begin{bmatrix}
48 & 96\\
144 & 192
\end{bmatrix}\)……….(1)
Similarly, let's find \(4( A × 6) = 4 (6 ×\begin{bmatrix}
2 & 4\\
6 & 8
\end{bmatrix})\)
2 & 4\\
6 & 8
\end{bmatrix})\)
\(= 4 × \begin{bmatrix}
12 & 24\\
36 & 48
\end{bmatrix} = \begin{bmatrix}
48 & 96\\
144 & 192
\end{bmatrix}\)……..(2)
12 & 24\\
36 & 48
\end{bmatrix} = \begin{bmatrix}
48 & 96\\
144 & 192
\end{bmatrix}\)……..(2)
From the equations \((1)\) and \((2)\), we can see that \((pq)A = p(Aq)\).
Hence, the given matrix follows the associative property of scalar multiplication.