UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Consider two numbers, \(15\) and \(20\).
 
The LCM of \(15\) and \(20\) is \(60\). That is, \(LCM(15,20) = 60\).
 
The GCD of \(15\) and \(20\) is \(5\). That is, \(GCD(15,20) = 5\).
 
Now, \(LCM(15,20) \times GCD(15,20) = 60 \times 5 = 300\)
 
\(\Rightarrow LCM(15,20) \times GCD(15,20) = 15 \times 20\)
 
This results in "the product of any two polynomials are equal to the product of their LCM and GCD".
 
That is, \(f(x) \times g(x) = LCM[f(x),g(x)] \times GCD[f(x),g(x)]\).
 
Let us understand the concept using an example.
Example:
Let \(f(x) = 21(x^4 - x^2)\) and \(g(x) = 16(x^2 + 3x)^2\). Let us verify \(f(x) \times g(x) = LCM[f(x),g(x)] \times GCD[f(x),g(x)]\).
 
Solution:
 
To prove: \(f(x) \times g(x) = LCM[f(x),g(x)] \times GCD[f(x),g(x)]\).
 
Proof: \(f(x) = 21(x^4 - x^2) = 3 \times 7 \times x^2 \times (x^2 - 1) = 3 \times 7 \times x^2 \times (x + 1)(x - 1)\)
 
\(g(x) = 16(x^2 + 3x)^2 = 2^4 \times (x^4 + 6x^3 + 9x^2) = 2^4 \times x^2 \times (x^2 + 6x + 9) = 2^4 \times x^2 \times (x + 3)(x + 3)\)
 
Now, \(LCM[f(x),g(x)] = 3 \times 7 \times 2^4 \times x^2 \times (x + 1)(x - 1) \times (x + 3)(x + 3)\)
 
\(= 336 \times x^2(x^2 -1)(x + 3)^2\)
 
\(GCD[f(x),g(x)] = x^2\)
 
Consider the \(LHS = f(x) \times g(x)\)
 
\(f(x) \times g(x) = 21(x^4 - x^2) \times 16(x^2 + 3x)^2 = 336(x^4 - x^2)(x^2 + 3x)^2\) ---- (\(1\))
 
Consider the \(RHS = LCM[f(x),g(x)] \times GCD[f(x),g(x)]\)
 
\(LCM[f(x),g(x)] \times GCD[f(x),g(x)] = 336 \times x^2(x^2 - 1)(x + 3)^2 \times x^2\)
 
\(= 336x^2(x^2 -1) \times x^2(x^2 + 6x + 9)\)
 
\(= 336(x^4 - x^2)(x^4 + 6x^3 + 9x^2)\)
 
\(= 336(x^4 - x^2)(x^2 + 3x)^2\) ---- (\(2\))
 
From equations (\(1\)) and (\(2\)), we have:
 
\(f(x) \times g(x) = LCM[f(x),g(x)] \times GCD[f(x),g(x)]\)
 
Hence, we proved.