PDF chapter test TRY NOW
Let l_1 and l_2 be two non-vertical lines.
The slope of line l_1 is m_1, and line l_2 is m_2.
Let the inclination of l_1 be \theta_1 and l_2 be \theta_2.
Then, m_1 = \tan \theta_1 and m_2 = \tan \theta_2.
Assume l_1 and l_2 are perpendicular lines.
In \Delta ABC:
\angle A = \theta_1 and \angle C = 90^\circ
Then, \angle B = 180^\circ - \angle A - \angle C [by Angle sum property].
\angle B = 180^\circ - \theta_1 - 90^\circ
\angle B =90^\circ - \theta_1
Measuring slope of l_2 through angle \theta_2 and 90^\circ - \theta_1 are opposite of each other.
\Rightarrow \tan \theta_2 = - \tan (90^\circ - \theta_1)
\Rightarrow \tan \theta_2 = - \frac{\sin(90^\circ - \theta_1)}{\cos(90^\circ - \theta_1)}
[Using the trigonometric identities \sin (90^\circ - A) = \cos A and \cos (90^\circ - A) = \sin A]
\Rightarrow \tan \theta_2 = - \frac{\cos \theta_1}{\sin \theta_1}
\Rightarrow \tan \theta_2 = - \cot \theta_1
\Rightarrow \tan \theta_2 = - \frac{1}{\tan \theta_1}
\Rightarrow \tan \theta_1 \cdot \tan \theta_2 = -1
\Rightarrow m_1 \cdot m_2 = -1
Conversely:
Let l_1 and l_2 be two non-vertical lines with slopes m_1 and m_2, respectively, such that m_1 \cdot m_2 = -1.
\Rightarrow \tan \theta_1 \cdot \tan \theta_2 = -1
\Rightarrow \tan \theta_1 = - \frac{1}{\tan \theta_2}
\Rightarrow \tan \theta_1 = - \cot \theta_2
\Rightarrow \tan \theta_1 = - \tan (90^\circ - \theta_2) [Using \cot (90^\circ - A) = \tan A]
\Rightarrow \tan \theta_1 = \tan (-(90^\circ - \theta_2)) [Using \tan (-A) = - \tan A]
\Rightarrow \tan \theta_1 = \tan (\theta_2 - 90^\circ)
\Rightarrow \theta_1 = \theta_2 - 90^\circ [since 0^\circ \le \theta_1, \theta_2 \le 180^\circ]
\Rightarrow \theta_2 = \theta_1 + 90^\circ - - - - - (I)
An exterior angle of a triangle is equal to the sum of two opposite interior angles.
\Rightarrow \theta_2 = \angle A + \angle C
\Rightarrow \theta_2 = \theta_1 + \angle C - - - - - (II)
On comparing (I) and (II), we get:
\angle C = 90^\circ
Thus, the lines l_1 and l_2 are perpendicular.
Two lines are perpendicular if and only if the slopes are negative reciprocal of each other. That is, m_1 \cdot m_2 = -1.
Example:
The slope of the line p is , and the slope of the line q is . Are the lines p and q are perpendicular?
Solution:
Let m_1 be the slope of p, and m_2 be the slope of q.
If m_1 \cdot m_2 = -1, then the lines are perpendicular.
m_1 = = -4
m_2 = =
m_1 \cdot m_2 = - 4 \ \times
m_1 \cdot m_2 = - 1
Therefore, p and q are perpendicular lines.