PUMPA - SMART LEARNING

எங்கள் ஆசிரியர்களுடன் 1-ஆன்-1 ஆலோசனை நேரத்தைப் பெறுங்கள். டாப்பர் ஆவதற்கு நாங்கள் பயிற்சி அளிப்போம்

Book Free Demo
Working rule to construct a pair of tangents to a circle from an external point P:
Given the radius of a circle and the distance of the external point from the centre, let us learn how to construct a pair of tangents to the circle.
Example:
Draw a circle of diameter 6 cm from a point P, which is 8 cm away from its centre. Draw the two tangents PA and PB to the circle and measure their lengths.
 
Given:
 
The diameter of the circle = 6 cm.
Radius of the circles = \frac{Diameter}{2}
Radius = \frac{6}{2}
 
= 3 cm
 
Rough Sketch:
 
Const_R_3.png
 
Construction:
 
Step 1: With O as the centre, draw a circle of radius 3 cm.
 
Step 2: Draw a line OP of length 8 cm.
 
Step 3: Draw a perpendicular bisector of OP, which cuts OP at M.
 
Step 4: With M as the centre and MO as the radius, draw a circle that cuts the previous circle at A and B.
 
Step 5: Join AP and BP. AP and BP are the required tangents. Thus the length of the
tangents are PA = PB = 7.4 cm.
 
Verification:
 
In the right angle triangle OAP by the Pythagoras theorem, we have:
 
OP^2 = OA^2 + PA^2
 
\Rightarrow PA^2 = OP^2 - OA^2
 
PA^2 = 8^2 + 3^2
 
PA^2 = 64 – 9
 
PA^2 = 55
 
\Rightarrow PA = \sqrt{55}
 
PA = 7.4 cm (approximately) .
 
Cons_3_GIF.gif