PDF chapter test TRY NOW
If \(A = \{1,3,5\}\) and \(B = \{2,3\}\) then
(i) finds \(A \times B\) and \(B \times A\).
(ii) Is \(A \times B = B \times A\)? If not, why?
(iii) Show that \(n(A \times B) = n(B \times A) = n(A) \times n(B)\)
Answer:
(i) \(A \times B =\) \(\{\)\(\}\)
\(B \times A =\) \(\{\)\(\}\)
(Note: Enter the ordered pairs in ascending order.)
(ii) Since all the ordered pairs of \(A \times B\) and \(B \times A\) are , then \(A \times B\) \(B \times A\).
(iii) \(n(A) =\)
\(n(B) =\)
\(n(A \times B) =\)
\(n(B \times A) =\)
Therefore, \(n(A \times B)\) \(n(B \times A)\) \(n(A) \times n(B)\).