PDF chapter test TRY NOW

If \(A = \{1,3,5\}\) and \(B = \{2,3\}\) then
 
(i) finds \(A \times B\) and \(B \times A\).
 
(ii) Is \(A \times B = B \times A\)? If not, why?
 
(iii) Show that \(n(A \times B) = n(B \times A) = n(A) \times n(B)\)
 
Answer:
 
(i) \(A \times B =\) \(\{\)\(\}\)
 
\(B \times A =\) \(\{\)\(\}\)
 
(Note: Enter the ordered pairs in ascending order.)
 
(ii) Since all the ordered pairs of \(A \times B\) and \(B \times A\) are , then \(A \times B\)  \(B \times A\).
 
(iii) \(n(A) =\)
 
\(n(B) =\)
 
\(n(A \times B) =\)
 
\(n(B \times A) =\)
 
Therefore, \(n(A \times B)\)  \(n(B \times A)\)  \(n(A) \times n(B)\).