UPSKILL MATH PLUS

Learn Mathematics through our AI based learning portal with the support of our Academic Experts!

Learn more
Let \(A = \{x \in \mathbb{N}|1 < x < 4\}\), \(B = \{x \in \mathbb{W}|0 \leq x < 2\}\) and \(C = \{x \in \mathbb{N}|x < 3\}\). Then verify that \(A \times (B \cup C) = (A \times B) \cup (A \times C)\)
 
Answer:
 
To prove:
 
\(A \times (B \cup C) = (A \times B) \cup (A \times C)\)
 
Explanation:
 
\(B \cup C =\) \(\{\)\(\}\)
 
\(A \times (B \cup C) =\) \(\{\)\(\}\)
 
\(A \times B = \{\)\(\}\)
 
\(A \times C = \{\)\(\}\)
 
\((A \times B) \cup (A \times C) = \{\)\(\}\)
 
As a result, \(A \times (B \cup C) = (A \times B) \cup (A \times C)\)
 
Hence, we proved.